LintCode - Kth smallest element in sorted matrix


http://www.lintcode.com/en/problem/kth-smallest-number-in-sorted-matrix/
Find the kth smallest number in at row and column sorted matrix.
Example
Given k = 4 and a matrix:
[
  [1 ,5 ,7],
  [3 ,7 ,8],
  [4 ,8 ,9],
]
return 5
Challenge
O(k log n), n is the maximal number in width and height.
1 3 5
2 4 6
7 8 9
You can solve this problem in O(k log n) time by merging the rows incrementally, augmented with a heap to efficiently find the minimum element.
Basically, you put the elements of the first column into a heap and track the row they came from. At each step, you remove the minimum element from the heap and push the next element from the row it came from (if you reach the end of the row, then you don't push anything). Both removing the minimum and adding a new element cost O(log n). At the jth step, you remove the jth smallest element, so after k steps you are done for a total cost of O(k log n) operations (where n is the number of rows in the matrix).
For the matrix above, you initially start with 1,2,7 in the heap. You remove 1 and add 3 (since the first row is 1 3 5) to get 2,3,7. You remove 2 and add 4 to get 3,4,7. Remove 3 and add 5 to get 4,5,7. Remove 4 and add 6 to get 5,6,7. Note that we are removing the elements in the globally sorted order. You can see that continuing this process will yield the kth smallest element after k iterations.
http://www.cnblogs.com/EdwardLiu/p/5137039.html
 9         public class Point {
10             public int x, y, val;
11             public Point(int x, int y, int val) {
12                 this.x = x;
13                 this.y = y;
14                 this.val = val;
15             }
16         } 
17         
18         Comparator<Point> comp = new Comparator<Point>() {
19             public int compare(Point left, Point right) {
20                 return left.val - right.val;
21             }
22         };
23         
24         public int kthSmallest(int[][] matrix, int k) {
25             if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
26                 return 0;
27             }
28             if (k > matrix.length * matrix[0].length) {
29                 return 0;
30             }
31             return horizontal(matrix, k);
32         }
33         
34         private int horizontal(int[][] matrix, int k) {
35             Queue<Point> heap = new PriorityQueue<Point>(k, comp);
36             for (int i = 0; i < Math.min(matrix.length, k); i++) {
37                 heap.offer(new Point(i, 0, matrix[i][0]));
38             }
39             for (int i = 0; i < k - 1; i++) {
40                 Point curr = heap.poll();
41                 if (curr.y + 1 < matrix[0].length) {
42                     heap.offer(new Point(curr.x, curr.y + 1, matrix[curr.x][curr.y + 1]));
43                 }
44             }
45             return heap.peek().val;
46         }
http://www.cnblogs.com/deepblueme/p/4780676.html
实际上是和丑数问题类似的一个问题,也是使用一个优先队列
From http://www.geeksforgeeks.org/kth-smallest-element-in-a-row-wise-and-column-wise-sorted-2d-array-set-1/
1) Build a min heap which takes O(n) time
2) Heapify k times which takes O(kLogn) time.
Therefore, overall time complexity is O(n + kLogn) time.
1) Build a min heap of elements from first row. A heap entry also stores row number and column number.
2) Do following k times.
…a) Get minimum element (or root) from min heap.
…b) Find row number and column number of the minimum element.
…c) Replace root with the next element from same column and min-heapify the root.
3) Return the last extracted root.

https://codesolutiony.wordpress.com/2015/05/31/lintcode-kth-smallest-number-in-sorted-matrix/
    public int kthSmallest(final int[][] matrix, int k) {
        boolean[][] visited = new boolean[matrix.length][matrix[0].length];
        PriorityQueue<int[]> heap = new PriorityQueue<int[]>(k, new Comparator<int[]>(){
            public int compare(int[] a, int[] b) {
                return Integer.compare(matrix[a[0]][a[1]], matrix[b[0]][b[1]]);
            }
        });
        heap.add(new int[]{0,0});
        visited[0][0] = true;
        while (k > 1) {
            int[] res = heap.remove();
            int x = res[0];
            int y = res[1];
             
             
            if (x+1 < matrix.length && visited[x+1][y] == false) {
                visited[x+1][y] = true;
                heap.add(new int[]{x+1, y});
            }
            if (y+1 < matrix[0].length && visited[x][y+1] == false) {
                visited[x][y+1] = true;
                heap.add(new int[]{x, y+1});
            }
            k--;
        }
        int[] res = heap.remove();
        return matrix[res[0]][res[1]];
    }
int kthSmallest(int mat[4][4], int n, int k)
{
    // k must be greater than 0 and smaller than n*n
    if (k <= 0 || k > n*n)
       return INT_MAX;
    // Create a min heap of elements from first row of 2D array
    HeapNode harr[n];
    for (int i = 0; i < n; i++)
        harr[i] =  {mat[0][i], 0, i};
    buildHeap(harr, n);
    HeapNode hr;
    for (int i = 0; i < k; i++)
    {
       // Get current heap root
       hr = harr[0];
       // Get next value from column of root's value. If the
       // value stored at root was last value in its column,
       // then assign INFINITE as next value
       int nextval = (hr.r < (n-1))? mat[hr.r + 1][hr.c]: INT_MAX;
       // Update heap root with next value
       harr[0] =  {nextval, (hr.r) + 1, hr.c};
       // Heapify root
       minHeapify(harr, 0, n);
    }
    // Return the value at last extracted root
    return hr.val;
}
private static class Cell implements Comparable<Cell> {
    private final int x;
    private final int y;
    private final int value;

    public Cell(int x, int y, int value) {
        this.x = x;
        this.y = y;
        this.value = value;
    }
    public int compareTo(Cell that) {
        return this.value - that.value;
    }
}
private static int findMin(int[][] matrix, int k) {

    int min = matrix[0][0];

    PriorityQueue<Cell> frontier = new PriorityQueue<>();
    frontier.add(new Cell(0, 0, min));

    while (k > 1) {

        Cell poll = frontier.remove();

        if (poll.y + 1 < matrix[poll.x].length) frontier.add(new Cell(poll.x, poll.y + 1, matrix[poll.x][poll.y + 1]));
        if (poll.x + 1 < matrix.length) frontier.add(new Cell(poll.x + 1, poll.y, matrix[poll.x + 1][poll.y]));

        if (poll.value > min) {
            min = poll.value;
            k--;
        }

    }
    return min;
}
http://www.dsalgo.com/2013/02/find-kth-largest-element-in-sorted.html
https://github.com/kamyu104/LintCode/blob/master/C++/kth-smallest-number-in-sorted-matrix.cpp

TODO:
https://learn.hackerearth.com/forum/161/kth-largest-element-in-a-2d-array-sorted-along-both-rows-and-columns/

Read full article from arrays - Kth smallest element in sorted matrix - Stack Overflow

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts