Segment Tree | Set 2 (Range Minimum Query) | GeeksforGeeks


Segment Tree | Set 2 (Range Minimum Query) | GeeksforGeeks
We have an array arr[0 . . . n-1]. We should be able to efficiently find the minimum value from index qs (query start) to qe (query end) where 0 <= qs <= qe <= n-1. The array is static (elements are not deleted and inserted during the series of queries).

Another solution is to create a 2D array where an entry [i, j] stores the minimum value in range arr[i..j]. Minimum of a given range can now be calculated in O(1) time, but preprocessing takes O(n^2) time. Also, this approach needs O(n^2) extra space which may become huge for large input arrays.
Segment tree can be used to do preprocessing and query in moderate time. With segment tree, preprocessing time is O(n) and time to for range minimum query is O(Logn). The extra space required is O(n) to store the segment tree.
Representation of Segment trees
1. Leaf Nodes are the elements of the input array.
2. Each internal node represents minimum of all leaves under it.
An array representation of tree is used to represent Segment Trees. For each node at index i, the left child is at index 2*i+1, right child at 2*i+2 and the parent is at \lfloor (i-1)/2  \rfloor.
Time Complexity for tree construction is O(n). Ther are total 2n-1 nodes, and value of every node is calculated only once in tree construction.
Time complexity to query is O(Logn). To query a range minimum, we process at most two nodes at every level and number of levels is O(Logn).

Query for minimum value of given range
Once the tree is constructed, how to do range minimum query using the constructed segment tree. Following is algorithm to get the minimum.
// qs --> query start index, qe --> query end index
int RMQ(node, qs, qe) 
{
   if range of node is within qs and qe
        return value in node
   else if range of node is completely outside qs and qe
        return INFINITE
   else
    return min( RMQ(node's left child, qs, qe), RMQ(node's right child, qs, qe) )
}
class SegmentTreeRMQ
{
    int st[]; //array to store segment tree
 
    // A utility function to get minimum of two numbers
    int minVal(int x, int y) {
        return (x < y) ? x : y;
    }
 
    // A utility function to get the middle index from corner
    // indexes.
    int getMid(int s, int e) {
        return s + (e - s) / 2;
    }
 
    /*  A recursive function to get the minimum value in a given
        range of array indexes. The following are parameters for
        this function.
 
        st    --> Pointer to segment tree
        index --> Index of current node in the segment tree. Initially
                   0 is passed as root is always at index 0
        ss & se  --> Starting and ending indexes of the segment
                     represented by current node, i.e., st[index]
        qs & qe  --> Starting and ending indexes of query range */
    int RMQUtil(int ss, int se, int qs, int qe, int index)
    {
        // If segment of this node is a part of given range, then
        // return the min of the segment
        if (qs <= ss && qe >= se)
            return st[index];
 
        // If segment of this node is outside the given range
        if (se < qs || ss > qe)
            return Integer.MAX_VALUE;
 
        // If a part of this segment overlaps with the given range
        int mid = getMid(ss, se);
        return minVal(RMQUtil(ss, mid, qs, qe, 2 * index + 1),
                RMQUtil(mid + 1, se, qs, qe, 2 * index + 2));
    }
 
    // Return minimum of elements in range from index qs (quey
    // start) to qe (query end).  It mainly uses RMQUtil()
    int RMQ(int n, int qs, int qe)
    {
        // Check for erroneous input values
        if (qs < 0 || qe > n - 1 || qs > qe) {
            System.out.println("Invalid Input");
            return -1;
        }
 
        return RMQUtil(0, n - 1, qs, qe, 0);
    }
 
    // A recursive function that constructs Segment Tree for
    // array[ss..se]. si is index of current node in segment tree st
    int constructSTUtil(int arr[], int ss, int se, int si)
    {
        // If there is one element in array, store it in current
        //  node of segment tree and return
        if (ss == se) {
            st[si] = arr[ss];
            return arr[ss];
        }
 
        // If there are more than one elements, then recur for left and
        // right subtrees and store the minimum of two values in this node
        int mid = getMid(ss, se);
        st[si] = minVal(constructSTUtil(arr, ss, mid, si * 2 + 1),
                constructSTUtil(arr, mid + 1, se, si * 2 + 2));
        return st[si];
    }
 
    /* Function to construct segment tree from given array. This function
       allocates memory for segment tree and calls constructSTUtil() to
       fill the allocated memory */
    void constructST(int arr[], int n)
    {
        // Allocate memory for segment tree
 
        //Height of segment tree
        int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
 
        //Maximum size of segment tree
        int max_size = 2 * (int) Math.pow(2, x) - 1;
        st = new int[max_size]; // allocate memory
 
        // Fill the allocated memory st
        constructSTUtil(arr, 0, n - 1, 0);
    }
}
Lintcode: https://codesolutiony.wordpress.com/2015/05/12/lintcode-interval-minimum-number/

Given an integer array (index from 0 to n-1, where n is the size of this array), and an query list. Each query has two integers [start, end]. For each query, calculate the minimum number between index start and end in the given array, return the result list.

Have you met this question in a real interview? Yes
Example
For array [1,2,7,8,5], and queries [(1,2),(0,4),(2,4)], return [2,1,5]

Note
We suggest you finish problem Segment Tree Build, Segment Tree Query and Segment Tree Modify first.

Challenge
O(logN) time for each query

    public ArrayList<Integer> intervalMinNumber(int[] A,
                                                ArrayList<Interval> queries) {
        ArrayList<Integer> res = new ArrayList<Integer>();
        if (A == null || A.length == 0 || queries == null || queries.size() == 0) {
            return res;
        }
        MinTreeNode root = buildTree(A, 0, A.length - 1);
        for (Interval interval : queries) {
            res.add(getVal(root, interval.start, interval.end));
        }
        return res;
    }
     
    private int getVal(MinTreeNode root, int from, int to) {
        if (root == null || root.end < from || root.start > to) {
            return Integer.MAX_VALUE;
        }
        if (root.start == root.end || (from <= root.start && to >= root.end)) {
            return root.min;
        }
        return Math.min(getVal(root.left, from, to), getVal(root.right, from, to));
    }
     
    private MinTreeNode buildTree(int[] A, int from, int to) {
        if (from > to) {
            return null;
        }
        if (from == to) {
            return new MinTreeNode(from, from, A[from]);
        }
        MinTreeNode root = new MinTreeNode(from, to);
        root.left = buildTree(A, from, (from + to) / 2);
        root.right = buildTree(A, (from + to) / 2 + 1, to);
        if (root.left == null) {
            root.min = root.right.min;
        } else if (root.right == null) {
            root.min = root.left.min;
        } else {
            root.min = Math.min(root.left.min, root.right.min);
        }
        return root;
    }
     
    class MinTreeNode {
        int start;
        int end;
        int min;
        MinTreeNode left;
        MinTreeNode right;
        public MinTreeNode(int start, int end) {
            this.start = start;
            this.end = end;
        }
        public MinTreeNode(int start, int end, int min) {
            this(start, end);
            this.min = min;
        }
    }
public class RMQTree {
    int[] data;
    int[] tree;
     
    int nextPowerOf2( int n ){
        int p = 1;
        for( ; p < n; p <<= 1 );
        return p;
    }
     
    void init( int root, int f, int t ){
        if( f == t ){
            tree[root] = f; 
        }
        else{
            int m = (f+t)/2, l = left(root), r = right(root);
            init( l, f, m );
            init( r, m+1, t );
            tree[root] = ( data[tree[l]] < data[tree[r]] ) ? tree[l] : tree[r];
        }
    }
    RMQTree( int[] a ){
        data = a;
        int n = a.length;
        int p = nextPowerOf2( n );
        tree = new int[2*p-1];
        init( 00, n-1 );
    }
    int parent( int i ){
        return (i-1)/2;
    }
    int left( int i ){
        return 2*i+1;
    }
    int right( int i ){
        return 2*i+2;
    }
    int minimum( int root, int low, int high, int f, int t ){
        // return
        //  the index of the minimal value of the array within the range a[f, ..., t],
        //  provided the portion of the array within the range a[low,...,high]
        if( t < low || high < f )
            return -1;
        if( f <= low && high <= t )
            return tree[root];
        int l = left(root);
        int r = right(root);
        int m = (low+high)/2;
        int l_min = minimum(l, low, m, f, t );
        int r_min = minimum(r, m+1, high, f, t );
        if( l_min==-1 )return r_min;
        if( r_min==-1 )return l_min;
        return data[l_min] < data[r_min] ? l_min : r_min;
    }
    int minimum( int f, int t ){
        return minimum( 00, data.length-1, f, t );
    }
}
http://coutcode.com/blog/segment-trees-prt1/
Range Sum:
int query(int l, int r)
{
    int ans = 0;
    for(l += n, r+=n; l < r; l >>= 1, r >>= 1)
        ans = ((l&1) ? t[l++] : 0) + ((r&1) ? t[--r] : 0);
    return ans;
}

Another solution is to create a 2D array where an entry [i, j] stores the minimum value in range arr[i..j]. Minimum of a given range can now be calculated in O(1) time, but preprocessing takes O(n^2) time. Also, this approach needs O(n^2) extra space which may become huge for large input arrays.
Read full article from Segment Tree | Set 2 (Range Minimum Query) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts