LeetCode 62 - Unique Paths


LeetCode 73 - Unique Paths II
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below). How many possible unique paths are there?

dp[m][n] = dp[m][n-1] + dp[m-1][n] where dp[m][n] denotes the number of unique paths
Backtracking Solution:
Code from http://www.cnblogs.com/TenosDoIt/p/3704091.html
int uniquePaths(int m, int n) {
if(m == 1 || n == 1)return 1;
else return  uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
}
Dynamic Programming Solution using Bottom-up Approach:
O(n^2) space & time: Code from http://joycelearning.blogspot.com/2013/10/leetcode-unique-paths.html
public int uniquePaths(int m, int n) {
        int[][] res = new int[m][n];
         
        // init left
        for(int i = 0; i < m; i++) {
            res[i][0] = 1;
        }
        // init top
        for(int j = 0; j < n; j++) {
            res[0][j] = 1;
        }
         
        // add values
        for(int i = 1; i < m; i++) {
            for(int j = 1; j < n; j++) {
                res[i][j] = res[i - 1][j] + res[i][j - 1];
            }
        }
         
        return res[m - 1][n - 1];
    }
O(n^2) time, O(n) space
https://leetcode.com/discuss/17530/java-dp-solution-with-complexity-o-n-m
public int uniquePaths(int m, int n) {
        if (m == 0 || n == 0) {
            return 0;
        }
        if (m == 1 || n == 1) {
            return 1;
        }

        int[] dp = new int[n];
        for (int i = 0; i < n; i++) {
            dp[i] = 1;
        }
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[j] += dp[j - 1];
            }
        }
        return dp[n - 1];
}

public int uniquePaths(int m, int n) {
        int[] res = new int[n];
         
        // init array
        for(int j = 0; j < n; j++) {
            res[j] = 1;
        }
         
        // add values
        for(int i = 1; i < m; i++) {
            // reset the head to 1 (simulate the next row head)
            // similar to set all left most elements in a 2D array to 1
            res[0] = 1;
            for(int j = 1; j < n; j++) {
                res[j] = res[j - 1] + res[j];
            }
        }
         
        return res[n - 1];
    }
    int uniquePaths(int m, int n) {
 4         vector<int>dp(n+1, 1);
 5         for(int i = 2; i <= m; i++)
 6             for(int j = 2; j <= n; j++)
 7                 dp[j] =  dp[j] + dp[j-1];
 8         return dp[n]; 
9 }
No matter how you choose your path, they must have exactly (m+n-2) moves contain m1 "down" and n1 "right". A path is simply a combination you selectm1 (or n1 ) moves from them and assign it with "down" (or "right"). As a result, you just need to calculate the number of such combinations.
其实这个和组合数有关,对于m*n的网格,从左上角走到右下角,总共需要走m+n-2步,其中必定有m-1步是朝右走,n-1步是朝下走,那么这个问题的答案就是组合数:, 这里需要注意的是求组合数时防止乘法溢出 
Code from http://www.darrensunny.me/leetcode-unique-paths/
public int uniquePaths(int m, int n) {
        // Formulation: find the number of combinations when picking m-1 (or n-1) items
        // from m+n-2 different items, which is (m+n-2)! / ((m-1)!(n-1)!)
        // = m(m+1)...(m+n-2) / (n-1)! (for ease of computation, if m is larger)
        int smaller, larger;
        if (m < n) {
            smaller = m-1;
            larger = n-1;
        } else {
            smaller = n-1;
            larger = m-1;
        }
        long denom = 1, numer = 1;      // Use "long" in case of overflow
        for (int i = 1; i <= smaller; i++) {
            denom *= i;
            numer *= larger+i;
        }
        return (int)(numer/denom);
    }

Code from http://www.cnblogs.com/TenosDoIt/p/3704091.html
X. Math
https://leetcode.com/discuss/9110/my-ac-solution-using-formula
First of all you should understand that we need to do n + m - 2 movements : m - 1 down, n - 1 right, because we start from cell (1, 1).
Secondly, the path it is the sequence of movements( go down / go right), therefore we can say that two paths are different when there is i-th (1 .. m + n - 2) movement in path1 differ i-th movement in path2.
So, how we can build paths. Let's choose (n - 1) movements(number of steps to the right) from (m + n - 2), and rest (m - 1) is (number of steps down).
I think now it is obvious that count of different paths are all combinations (n - 1) movements from (m + n-2).
int uniquePaths(int m, int n) { int N = n + m - 2;// how much steps we need to do int k = m - 1; // number of steps that need to go down double res = 1; // here we calculate the total possible path number // Combination(N, k) = n! / (k!(n - k)!) // reduce the numerator and denominator and get // C = ( (n - k + 1) * (n - k + 2) * ... * n ) / k! for (int i = 1; i <= k; i++) res = res * (N - k + i) / i; return (int)res; }
https://discuss.leetcode.com/topic/19613/math-solution-o-1-space
https://discuss.leetcode.com/topic/31724/java-solution-0ms-4lines
This is a combinatorial problem and can be solved without DP. For mxn grid, robot has to move exactly m-1 steps down and n-1 steps right and these can be done in any order.
For the eg., given in question, 3x7 matrix, robot needs to take 2+6 = 8 steps with 2 down and 6 right in any order. That is nothing but a permutation problem. Denote down as 'D' and right as 'R', following is one of the path :-
D R R R D R R R
We have to tell the total number of permutations of the above given word. So, decrease both m & n by 1 and apply following formula:-
Total permutations = (m+n)! / (m! * n!)
    public int uniquePaths(int m, int n) {
        if(m == 1 || n == 1)
            return 1;
        m--;
        n--;
        if(m < n) {              // Swap, so that m is the bigger number
            m = m + n;
            n = m - n;
            m = m - n;
        }
        long res = 1;
        int j = 1;
        for(int i = m+1; i <= m+n; i++, j++){       // Instead of taking factorial, keep on multiply & divide
            res *= i;
            res /= j;
        }
            
        return (int)res;
    }

http://bookshadow.com/weblog/2015/10/11/leetcode-unique-paths/
题目可以转化为下面的问题:
求m - 1个白球,n - 1个黑球的排列方式
公式为:C(m + n - 2, n - 1)
(m+n-2)!/(m-1)!(n-1)!
http://agoodcode.blogspot.com/2014/04/leetcode-unique-paths.html
O(min(m,n))
int uniquePaths(int m, int n) {
        return combination(m+n-2, m-1);
    }
 
    int combination(int a, int b)
    {
        if(b > (a >> 1))b = a - b;
        long long res = 1;
        for(int i = 1; i <= b; i++)
            res = res * (a - i + 1) / i;
        return res;
    }

class Solution(object): def uniquePaths(self, m, n): """ :type m: int :type n: int :rtype: int """ if m < n: m, n = n, m mul = lambda x, y: reduce(operator.mul, range(x, y), 1) return mul(m, m + n - 1) / mul(1, n)

X. DFS
http://www.programcreek.com/2014/05/leetcode-unique-paths-java/
public int uniquePaths(int m, int n) {
    return dfs(0,0,m,n);
}
 
public int dfs(int i, int j, int m, int n){
    if(i==m-1 && j==n-1){
        return 1;
    }
 
    if(i<m-1 && j<n-1){
        return dfs(i+1,j,m,n) + dfs(i,j+1,m,n);
    }
 
    if(i<m-1){
        return dfs(i+1,j,m,n);
    }
 
    if(j<n-1){
        return dfs(i,j+1,m,n);
    }
 
    return 0;
}
Read full article from Unique Paths | LeetCode

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts