Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array
[−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray
http://www.geeksforgeeks.org/largest-sum-contiguous-subarray/[4,−1,2,1]
has the largest sum = 6
.Kadane’s Algorithm:
Loop for each element of the array (a) max_ending_here = max_ending_here + a[i] (b) if(max_ending_here < 0) max_ending_here = 0 (c) if(max_so_far < max_ending_here) max_so_far = max_ending_here return max_so_far
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
int maxSubArray(int A[], int n) { | |
int sum = 0, max = INT_MIN; | |
for(int i=0; i<n; i++){ | |
sum+=A[i]; | |
if(sum>max) | |
max = sum; | |
if(sum<0) | |
sum = 0; | |
} | |
return max; | |
} | |
}; |
public int maxSubArray(int[] A) { int max = A[0]; int[] sum = new int[A.length]; sum[0] = A[0]; for (int i = 1; i < A.length; i++) { sum[i] = Math.max(A[i], sum[i - 1] + A[i]); max = Math.max(max, sum[i]); } return max; }Dive and Conquer: O(nlogn)
int maxSubArray(int A[], int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int maxV = INT_MIN;
return maxArray(A, 0, n-1, maxV);
}
int maxArray(int A[], int left, int right, int& maxV)
{
if(left>right)
return INT_MIN;
int mid = (left+right)/2;
int lmax = maxArray(A, left, mid -1, maxV);
int rmax = maxArray(A, mid + 1, right, maxV);
maxV = max(maxV, lmax);
maxV = max(maxV, rmax);
int sum = 0, mlmax = 0;
for(int i= mid -1; i>=left; i--)
{
sum += A[i];
if(sum > mlmax)
mlmax = sum;
}
sum = 0; int mrmax = 0;
for(int i = mid +1; i<=right; i++)
{
sum += A[i];
if(sum > mrmax)
mrmax = sum;
}
maxV = max(maxV, mlmax + mrmax + A[mid]);
return maxV;
}
Read full article from 喵喵~: Maximum subarray@leetcode