Chain Matrix Multiplication


https://www.8bitavenue.com/dynamic-programming-matrix-chain-multiplication/
http://www.geeksforgeeks.org/dynamic-programming-set-8-matrix-chain-multiplication/
Given a sequence of n matrices A1A2, ... An, and their dimensions p0p1p2, ..., pn, where where i = 1, 2, ..., n, matrix Ai has dimension p− 1 × pi, determine the order of multiplication that minimizes the the number of scalar multiplications.
For 1 ≤ i ≤ ≤ n, let m[ij] be the minimum number of scalar multiplications needed to compute the Ai..j. The optimum cost can be described by the following recursive formulation.
Basis: Observe that if i = j then the problem is trivial; the sequence contains only one matrix, and so the cost is 0. (In other words, there is nothing to multiply.) Thus,
m[i, i] = 0 for i = 1, 2, ..., n.

Step: If i ≠ j, then we are asking about the product of the subchain Ai..j and we take advantage of the structure of an optimal solution. We assume that the optimal parenthesization splits the product, Ai..j into for each value of k, 1 ≤  k ≤  n − 1 as Ai..k . Ak+1..j.
The optimum time to compute is m[ik], and the optimum time to compute is m[k + 1, j]. We may assume that these values have been computed previously and stored in our array. Since Ai..k is a matrix, and Ak+1..j is a matrix, the time to multiply them is p . pk . pjThis suggests the following recursive rule for computing m[ij].

Matrix chain recurrence
To keep track of optimal subsolutions, we store the value of k in a table s[ij]. Recall, k is the place at which we split the product Ai..j to get an optimal parenthesization. 

有A1A2…An共n个矩阵,第i个矩阵的大小为pi-1*pi,计算代价由标量乘法决定,求最小代价及运算顺序。
比如:屏幕快照 2016-02-21 上午12.10.10.png
对应的答案是:
屏幕快照 2016-02-21 上午12.14.33.png 15125次乘法

思路

设m[i,j]表示从i到j的矩阵链的最小计算代价,s[i,j]=k表示在i和j中间的矩阵k后面加一个括号,则m的递推方法是:
 矩阵链.jpg
第一项是前半部分,第二项是后半部分,第三项是前后两部分组合的计算代价。最终m[1,n]就是最小代价。由于是ijk三重遍历,所以复杂度是O(n3)。这只是粗略估计,据《算法导论》介绍,准确的复杂度是屏幕快照 2016-02-21 下午1.10.38.png
在递推的同时,记录最小的k即可。那如何利用s[i,j]来得到最终的的运算顺序呢?递归往下打括号就行了:
矩阵链顺序.jpg
private static int n;
private static int[][] m = new int[100][100];
private static int[][] s = new int[100][100];
private static int[] p = new int[105];
private static final int MAX = Integer.MAX_VALUE;
public static void main(String[] args)
{
    Scanner scan = new Scanner(System.in);
    n = scan.nextInt();
    for (int i = 0; i <= n; i++)
    {
        p[i] = scan.nextInt();
        m[i][i] = 0;
    }
    for (int l = 2; l <= n; l++)
    {
        for (int i = 1; i <= n - l + 1; i++)
        {
            int j = i + l - 1;
            m[i][j] = MAX;
            for (int k = i; k <= j - 1; k++)
            {
                int q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j];
                if (q < m[i][j])
                {
                    m[i][j] = q;
                    s[i][j] = k;
                }
            }
        }
    }
    print(1, n);
    System.out.printf(" %d\n", m[1][n]);
}
public static void print(int i, int j)
{
    if (i == j)
        System.out.print("A" + i);
    else
    {
        System.out.print("(");
        print(i, s[i][j]);
        print(s[i][j] + 1, j);
        System.out.print(")");
    }
}
  1. ((A1(A2A3))((A4A5)A6)) 15125
From: http://mytestpjt.googlecode.com/svn/trunk/ASAssembly/src/com/mhhe/clrs2e/MatrixChainMultiply.java
    private void matrixChainOrder(int[] p)
    {
 // Initial the cost for the empty subproblems.
 for (int i = 1; i <= n; i++)
     m[i][i] = 0;

 // Solve for chains of increasing length l.
 for (int l = 2; l <= n; l++) {
     for (int i = 1; i <= n-l+1; i++) {
  int j = i + l - 1;
  m[i][j] = Integer.MAX_VALUE;

  // Check each possible split to see if it's better
  // than all seen so far.
  for (int k = i; k < j; k++) {
      int q = m[i][k] + m[k+1][j] + p[i-1] * p[k] * p[j];
      if (q < m[i][j]) {
   // q is the best split for this subproblem so far.
   m[i][j] = q;
   s[i][j] = k;
      }
  }
     }
 }
    }
Also refer to http://www.geeksforgeeks.org/dynamic-programming-set-8-matrix-chain-multiplication/
int MatrixChainOrder(int p[], int n)
{
    /* For simplicity of the program, one extra row and one extra column are
       allocated in m[][].  0th row and 0th column of m[][] are not used */
    int m[n][n];
    int i, j, k, L, q;
    /* m[i,j] = Minimum number of scalar multiplications needed to compute
       the matrix A[i]A[i+1]...A[j] = A[i..j] where dimention of A[i] is
       p[i-1] x p[i] */
    // cost is zero when multiplying one matrix.
    for (i = 1; i < n; i++)
        m[i][i] = 0;
    // L is chain length. 
    for (L=2; L<n; L++)  
    {
        for (i=1; i<=n-L+1; i++)
        {
            j = i+L-1;
            m[i][j] = INT_MAX;
            for (k=i; k<=j-1; k++)
            {
                // q = cost/scalar multiplications
                q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
                if (q < m[i][j])
                    m[i][j] = q;
            }
        }
    }
    return m[1][n-1];
}

int MatrixChainOrder(int p[], int i, int j)
{
    if(i == j)
        return 0;
    int k;
    int min = INT_MAX;
    int count;
    // place parenthesis at different places between first and last matrix,
    // recursively calculate count of multiplcations for each parenthesis
    // placement and return the minimum count
    for (k = i; k <j; k++)
    {
        count = MatrixChainOrder(p, i, k) +
                MatrixChainOrder(p, k+1, j) +
                p[i-1]*p[k]*p[j];
        if (count < min)
            min = count;
    }
    // Return minimum count
    return min;

Read full article from Chain Matrix Multiplication

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts