LeetCode 516 - Longest Palindromic Subsequence


https://leetcode.com/problems/longest-palindromic-subsequence
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".

X. Brute Force - DFS
  1. O(2^n) Brute force. If the two ends of a string are the same, then they must be included in the longest palindrome subsequence. Otherwise, both ends cannot be included in the longest palindrome subsequence.
    int longestPalindromeSubseq(string s) {
        return longestPalindromeSubseq(0,s.size()-1,s); 
    }
    int longestPalindromeSubseq(int l, int r, string &s) {
        if(l==r) return 1;
        if(l>r) return 0;  //happens after "aa" 
        return s[l]==s[r] ? 2 + longestPalindromeSubseq(l+1,r-1, s) : 
            max(longestPalindromeSubseq(l+1,r, s),longestPalindromeSubseq(l,r-1, s)); 
    }
Let X[0..n-1] be the input sequence of length n and L(0, n-1) be the length of the longest palindromic subsequence of X[0..n-1].
If last and first characters of X are same, then L(0, n-1) = L(1, n-2) + 2.
Else L(0, n-1) = MAX (L(1, n-1), L(0, n-2)).
lps(seq, 0, n-1)
int lps(char *seq, int i, int j)
{
   // Base Case 1: If there is only 1 character
   if (i == j)
     return 1;
   // Base Case 2: If there are only 2 characters and both are same
   if (seq[i] == seq[j] && i + 1 == j)
     return 2;
   // If the first and last characters match
   if (seq[i] == seq[j])
      return lps (seq, i+1, j-1) + 2;
   // If the first and last characters do not match
   return max( lps(seq, i, j-1), lps(seq, i+1, j) );

}

X. DFS+ cache: O(n^2) Memoization
Top bottom recursive method with memoization
    public int longestPalindromeSubseq(String s) {
        return helper(s, 0, s.length() - 1, new Integer[s.length()][s.length()]);
    }
    
    private int helper(String s, int i, int j, Integer[][] memo) {
        if (memo[i][j] != null) {
            return memo[i][j];
        }
        if (i > j)      return 0;
        if (i == j)     return 1;
        
        if (s.charAt(i) == s.charAt(j)) {
            memo[i][j] = helper(s, i + 1, j - 1, memo) + 2;
        } else {
            memo[i][j] = Math.max(helper(s, i + 1, j, memo), helper(s, i, j - 1, memo));
        }
        return memo[i][j];
    }

X. DP
How we fill the dp array: diagonal by diagonal, len++
--->
     ^
      |
https://www.youtube.com/watch?v=U4yPae3GEO0
https://discuss.leetcode.com/topic/78603/straight-forward-java-dp-solution
dp[i][j]: the longest palindromic subsequence's length of substring(i, j)
State transition:
dp[i][j] = dp[i+1][j-1] + 2 if s.charAt(i) == s.charAt(j)
otherwise, dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1])
Initializationdp[i][i] = 1

Increasing distance between i and j may be better.
    public int longestPalindromeSubseq(String s) {
        int len=s.length();
        int[][] dp=new int[len][len];
        for (int i=0;i<len;i++)
            dp[i][i]=1;
        for (int d=1;d<len;d++) {
            for (int i=0;i<len-d;i++) {
                int j=i+d;
                if (s.charAt(i)==s.charAt(j)) dp[i][j]=2+dp[i+1][j-1];
                else dp[i][j]=Math.max(dp[i][j-1], dp[i+1][j]);//\\
            }
        }
        return dp[0][len-1];
    }


   static int lps(String seq)
    {
       int n = seq.length();
       int i, j, cl;
       int L[][] = new int[n][n];  // Create a table to store results of subproblems
      
       // Strings of length 1 are palindrome of lentgh 1
       for (i = 0; i < n; i++)
           L[i][i] = 1;
              
        // Build the table. Note that the lower diagonal values of table are
        // useless and not filled in the process. The values are filled in a
        // manner similar to Matrix Chain Multiplication DP solution (See
        // http://www.geeksforgeeks.org/archives/15553). cl is length of
        // substring
        for (cl=2; cl<=n; cl++)
        {
            for (i=0; i<n-cl+1; i++)
            {
                j = i+cl-1;
                if (seq.charAt(i) == seq.charAt(j) && cl == 2)
                   L[i][j] = 2;
                else if (seq.charAt(i) == seq.charAt(j))
                   L[i][j] = L[i+1][j-1] + 2;
                else
                   L[i][j] = max(L[i][j-1], L[i+1][j]);
            }
        }
              
        return L[0][n-1];
    }
https://leetcode.com/problems/longest-palindromic-subsequence
一道区间DP,更新没什么好说的,但需要注意两个for循环的遍历顺序。递推式:
//dp[j][i] 表示在区间[j,i]之间的最长回文,可断 s[j] == s[i]: dp[j][i] = dp[j+1][i-1] + 2; //没有最新的回文生成,所以沿用旧的回文长度 s[j] != s[i]: dp[j][i] = Math.max(dp[j+1][i],dp[j][i-1]);

public int longestPalindromeSubseq(String s) { int n = s.length(); int[][] dp = new int[n][n]; char[] c = s.toCharArray(); for (int i = 0; i < n; i++) { dp[i][i] = 1; for (int j = i-1; j >= 0; j--) { if (c[j] == c[i]) { dp[j][i] = dp[j + 1][i - 1] + 2; } else { dp[j][i] = Math.max(dp[j+1][i], dp[j][i-1]); } } } return dp[0][n-1]; }
X. DP 2 - bottom row to top row - along diagonal
https://discuss.leetcode.com/topic/78603/straight-forward-java-dp-solution
dp[i][j]: the longest palindromic subsequence's length of substring(i, j)
State transition:
dp[i][j] = dp[i+1][j-1] + 2 if s.charAt(i) == s.charAt(j)
otherwise, dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1])
Initializationdp[i][i] = 1
    public int longestPalindromeSubseq(String s) {
        int[][] dp = new int[s.length()][s.length()];
        
        for (int i = s.length() - 1; i >= 0; i--) {
            dp[i][i] = 1;
            for (int j = i+1; j < s.length(); j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i+1][j-1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
                }
            }
        }
        return dp[0][s.length()-1];
    }
  1. O(n^2) time, O(n) space dp. In #3, the current row is computed from the previous 2 rows only. So we don't need to keep all the rows.
    int longestPalindromeSubseq(string s) {
        int n = s.size();
        vector<int> v0(n), v1(n,1), v(n), *i_2=&v0, *i_1=&v1, *i_=&v;
        for(int i=2;i<=n;i++) {//length
            for(int j=0;j<n-i+1;j++)//start index
                i_->at(j) = s[j]==s[i+j-1]?2+i_2->at(j+1):max(i_1->at(j),i_1->at(j+1));
            swap(i_1,i_2);    
            swap(i_1,i_); //rotate i_2, i_1, i_
        }
        return i_1->at(0); 
    }
X. DP O(n) space
http://www.cnblogs.com/grandyang/p/6493182.html
    int longestPalindromeSubseq(string s) {
        int n = s.size(), res = 0;
        vector<int> dp(n, 1);
        for (int i = n - 1; i >= 0; --i) {
            int len = 0;
            for (int j = i + 1; j < n; ++j) {
                int t = dp[j];
                if (s[i] == s[j]) {
                    dp[j] = len + 2;
                } 
                len = max(len, t);
            }
        }
        for (int num : dp) res = max(res, num);
        return res;
    }

解法II 动态规划(Dynamic Programming)
问题转化为求s与reversed(s)的最长公共子序列
令s' = reversed(s), size = len(s)

dp[i][j]表示s[0 .. i]与s'[0 .. j]的最长公共子序列的长度

枚举回文串的中点m,求dp[m][size - m] * 2 以及 dp[m - 1][size - m] * 2 + 1的最大值
public int longestPalindromeSubseq(String s) { int size = s.length(); int[][] dp = new int[size + 1][size + 1]; for (int i = 1; i <= size; i++) { for (int j = 1; j <= size; j++) { if (s.charAt(i - 1) == s.charAt(size - j)) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]); } } } int ans = s.length() > 0 ? 1 : 0; for (int m = 0; m < size; m++) { ans = Math.max(dp[m][size - m] * 2, ans); if (m > 0) ans = Math.max(dp[m - 1][size - m] * 2 + 1, ans); } return ans; }

X.
Top bottom recursive method with memoization
    public int longestPalindromeSubseq(String s) {
        return helper(s, 0, s.length() - 1, new Integer[s.length()][s.length()]);
    }
    
    private int helper(String s, int i, int j, Integer[][] memo) {
        if (memo[i][j] != null) {
            return memo[i][j];
        }
        if (i > j)      return 0;
        if (i == j)     return 1;
        
        if (s.charAt(i) == s.charAt(j)) {
            memo[i][j] = helper(s, i + 1, j - 1, memo) + 2;
        } else {
            memo[i][j] = Math.max(helper(s, i + 1, j, memo), helper(s, i, j - 1, memo));
        }
        return memo[i][j];
    }

X.
https://discuss.leetcode.com/topic/78630/evolve-from-brute-force-to-dp
  1. O(2^n) Brute force. If the two ends of a string are the same, then they must be included in the longest palindrome subsequence. Otherwise, both ends cannot be included in the longest palindrome subsequence.
    int longestPalindromeSubseq(string s) {
        return longestPalindromeSubseq(0,s.size()-1,s); 
    }
    int longestPalindromeSubseq(int l, int r, string &s) {
        if(l==r) return 1;
        if(l>r) return 0;  //happens after "aa" 
        return s[l]==s[r] ? 2 + longestPalindromeSubseq(l+1,r-1, s) : 
            max(longestPalindromeSubseq(l+1,r, s),longestPalindromeSubseq(l,r-1, s)); 
    }

Brute force solution, O(N^3):
The obvious brute force solution is to pick all possible starting and ending positions for a substring, and verify if it is a palindrome. There are a total of C(N, 2) such substrings (excluding the trivial solution where a character itself is a palindrome).

Different solution: http://massivealgorithms.blogspot.com/2014/07/longest-palindromic-substring-set-2.html
Read full article from Dynamic Programming | Set 12 (Longest Palindromic Subsequence) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts