Dynamic Programming | Set 7 (Coin Change) | GeeksforGeeks


Given a value N, if we want to make change for N cents, and we have infinite supply of each of S = { S1, S2, .. , Sm} valued coins, how many ways can we make the change? The order of coins doesn’t matter.
From http://www.algorithmist.com/index.php/Coin_Change
To count total number solutions, we can divide all set solutions in two sets.
1) Solutions that do not contain mth coin (or Sm).
2) Solutions that contain at least one Sm.
Let count(S[], m, n) be the function to count the number of solutions, then it can be written as sum of count(S[], m-1, n) and count(S[], m, n-Sm).

Recursive Formulation

We are trying to count the number of distinct sets.
Since order does not matter, we will impose that our solutions (sets) are all sorted in non-decreasing order (Thus, we are looking at sorted-set solutions: collections).
For a particular N and S = \{ S_1, S_2, \ldots, S_m \} (now with the restriction that S_1 < S_2 < \ldots < S_m, our solutions can be constructed in non-decreasing order), the set of solutions for this problem, C(N,m), can be partitioned into two sets:
  • There are those sets that do not contain any Sm and
  • Those sets that contain at least 1 Sm
This partitioning will essentially break the initial problem into two subproblems:
  1. If N < Sm (that is, a solution does not contain Sm), then we can solve the subproblem of N with S = \{ S_1, S_2, \ldots, S_{m-1} \}, or the solutions ofC(N,m - 1).
  2. If N \geq S_m (that is, a solution does in fact contain Sm), then we are using at least one Sm, thus we are now solving the subproblem of N - SmS = \{ S_1, S_2, \ldots, S_m \}. This is C(N - Sm,m).
Thus, we can formulate the following:
C(N,m) = C(N,m - 1) + C(N - Sm,m)
Time Complexity: O(mn)
int count( int S[], int m, int n )
{
    int i, j, x, y;
    // We need n+1 rows as the table is consturcted in bottom up manner using
    // the base case 0 value case (n = 0)
    int table[n+1][m];
    
    // Fill the enteries for 0 value case (n = 0)
    for (i=0; i<m; i++)
        table[0][i] = 1;
    // Fill rest of the table enteries in bottom up manner 
    for (i = 1; i < n+1; i++)
    {
        for (j = 0; j < m; j++)
        {
            // Count of solutions including S[j]
            x = (i-S[j] >= 0)? table[i - S[j]][j]: 0;
            // Count of solutions excluding S[j]
            y = (j >= 1)? table[i][j-1]: 0;
            // total count
            table[i][j] = x + y;
        }
    }
    return table[n][m-1];
}
Following is a simplified version of method 2. The auxiliary space required here is O(n) only.
http://stackoverflow.com/questions/27880842/space-optimized-solution-for-coin-change
It just uses previous row, same column value, and same row, previous columns(this is always kept).
int count( int S[], int m, int n )
{
    // table[i] will be storing the number of solutions for
    // value i. We need n+1 rows as the table is consturcted
    // in bottom up manner using the base case (n = 0)
    int table[n+1];
    // Initialize all table values as 0
    memset(table, 0, sizeof(table));
    // Base case (If given value is 0)
    table[0] = 1;
    // Pick all coins one by one and update the table[] values
    // after the index greater than or equal to the value of the
    // picked coin
    for(int i=0; i<m; i++)
        for(int j=S[i]; j<=n; j++)
            table[j] += table[j-S[i]];
    return table[n];
}
http://www.zrzahid.com/coin-sum-problem-dynamic-programming/
Optimal Substructure
We can see that we can find the number ways we can make n using C={ c1, c2, .. , cm} coins by combining solution of making (n-cm) and including last coin cm to current solution; or we can simply ignore the last coin cm and try to find solution with remaining coins.
let, cs(C, n, m) be the number of solutions of making n using m coins C = {c1, c2, …, cm}. The we can write the following recursive formula,
cs(C, n, m) = cs(C, n-cm, m) + cs(C, n, m-1).
public static int coinSum(final int[] coins, final int sum) {
    final int m = coins.length;
    final int[][] csTable = new int[sum + 1][m + 1];

    // base cases: if m == 0 then no solution for any sum
    for (int i = 0; i <= sum; i++) {
        csTable[i][0] = 0;
    }
    // base case: if sum = 0 then there is only one solution for any input set: just take none of each of the items.
    for (int j = 0; j <= m; j++) {
        csTable[0][j] = 1;
    }

    for (int i = 1; i <= sum; i++) {
        for (int j = 1; j <= m; j++) {
            // solutions excluding coins[j]
            final int s1 = csTable[i][j - 1];
            // solutions including coins[j]
            // look at the column index in csTable[i - coins[j - 1]][j]. This is not j-1 as we can use as much coin
            // of type j as we like.
            final int s2 = (i - coins[j - 1]) >= 0 ? csTable[i - coins[j - 1]][j] : 0;

            csTable[i][j] = s1 + s2;
        }
    }

    return csTable[sum][m];
}
Also refer to http://www.algorithmist.com/index.php/Coin_Change
Read full article from Dynamic Programming | Set 7 (Coin Change) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts