Prime XOR - HackerRank


https://www.hackerrank.com/challenges/prime-xor/problem
https://suzyz.github.io/2017/09/16/prime-xor/
Given an array A with N integers between 3500 and 4500, find the number of unique multisets that can be formed using elements from the array such that the bitwise XOR of all the elements of the multiset is a prime number.

Solution

First, we notice that 3500 ≤ a[i] ≤ 4500. So the bitwise XOR of any multiset is in the range [0,(2^13)-1].
Let count[i] be the number of i in array A.
Let f[i,j] be the number of unique multisets whose elements are within [3500,i], and whose XOR equals to j. So we have

f[i,j] = ((f[i-1,j] × (count[i]/2 + 1)) % mo + (f[i-1,j^i] × ((count[i]+1)/2) % mo)) %mo
int n,count[maxd];
bool is_prime[max_xor+2];
long long f[2][max_xor+2];
void init()
{
for(int i=2;i<=max_xor;i++) is_prime[i]=true;
for(int i=2;i<=max_xor;i++)
if(is_prime[i])
{
int j=i<<1;
while(j<=max_xor)
{
is_prime[j]=false;
j+=i;
}
}
}
int main()
{
init();
int T;
scanf("%d",&T);
while(T)
{
T--;
memset(count,0,sizeof(count));
memset(f,0,sizeof(f));
scanf("%d",&n);
int tmp;
for(int i=1;i<=n;i++)
{
scanf("%d",&tmp);
count[tmp]++;
}
f[0][0]=1;
int flag=1;
for(int i=3500;i<=4500;i++)
{
for(int j=0;j<=max_xor;j++)
if(count[i]==0)
f[flag][j]=f[1-flag][j];
else
f[flag][j] = (f[1-flag][j]*(count[i]/2 + 1) % mo + f[1-flag][j^i]*((count[i]+1)/2) % mo) % mo;
flag=1-flag;
}
long long ans=0;
for(int j=0;j<=max_xor;j++)
if(is_prime[j])
ans = (ans + f[1-flag][j])%mo;
printf("%lld\n",ans);
}
This problem can be solved using dynamic programming and pigeonhole principle. Using sieve of Eratosthenes, mark all the primes lying between  to . Create a hashmap which stores the count of occurrences of all the array elements. Note that since the xor-sum of any subset of array elements will not exceed . Using this property, we can write a  dynamic programming solution with  constant factor such that  would store the count of subsets that can be formed with the first  elements such that the xor-sum of the elements in the subset is .
int a[5025];
vector<int> v;
bool prime[9025];
long long mem[2][8192];
void sieve( )   
{
    memset(prime, true, sizeof(prime));
    prime[1]=false, prime[0]=false; 
    for(int i=4;i<=9000;i+=2)
    prime[i]=false;
    for (int p=3; p*p<=9000;p+=2)
 {
        if (prime[p] == true)
        {
            for (int i=p*p; i<=9000; i += 2*p)
                prime[i] = false;
        }
    }

}
int main() {
//freopen("input2.txt","r",stdin);
//freopen("output2.txt","w",stdout);
clock_t begin, end;
begin = clock();
int t;
sieve();
cin >> t;
while(t--) {
    int n;
    cin >> n;
    v.clear();
    memset(a,0,sizeof(a));
    for(int i=0;i<n;i++) {
        int x;
        scanf("%d",&x);
        a[x]+=1;
    }
    for(int i=3500;i<4525;i++)
        if(a[i]>=1)
            v.push_back(i);
    memset(mem,0,sizeof(mem));
    mem[0][0]=1;
    int flag=1;
    int k = v.size();
    for(int i=1;i<=k;i++) {
        for(int j=0;j<8192;j++) {
            mem[flag][j] = (mem[flag^1][j]*(1+(a[v[i-1]])/2))%mod + (mem[flag^1][j^v[i-1]]*((a[v[i-1]]+1)/2))%mod;
            if(mem[flag][j]>=mod)
                mem[flag][j]%=mod;
        }
        flag = flag^1;

    }
    long long ans=0;
    long long res=0;
    for(int i=1;i<8192;i++) {
        if(prime[i]){

            res+= mem[flag^1][i];
            res%=mod;
        }
    }
    cout << res << endl;
}
end = clock();
//cout << ((float) (end) - (float) (begin)) / CLOCKS_PER_SEC << endl;
fclose(stdout);
return 0;

Explanation of Flag

This is a standard approach to reduce memory usage when using dynamic programming.
The idea is that often each row of a DP array only depends on the previous row. In this case, instead of storing the whole 2d DP[i][j] array, you can instead just use 2 rows of the array.
In other words, DP[i][j] is stored in mem[0][j] if i is even, and in mem[1][j] if i is odd. The mem array is reused multiple times and after each iteration holds the most recent two rows of the full DP array.

Explanation of recurrence

Suppose we have 5 duplicates of a certain value v. There are 1+5/2 ways of making an xor of 0 (take either 0,2 or 4 copies). There are (1+5)/2 ways of making an xor of v (take either 1,3 or 5 copies).
So to make the new value j, we can either start with j and add 0,2 or 4 copies of v, or start with j^v and add 1,3 or 5 copies

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts