LeetCode 204 - Count Primes (Java)


LeetCode – Count Primes (Java)
Count the number of prime numbers less than a non-negative number, n
This solution is the implementation of Sieve of Eratosthenes.

X. Using BitSet
https://leetcode.com/discuss/33528/accepted-java-code-with-bitset
java.util.BitSet.nextClearBit(int)
     * Returns the index of the first bit that is set to {@code false}

     * that occurs on or after the specified starting index.
java.util.BitSet.nextSetBit(int)
     * Returns the index of the first bit that is set to {@code true}
     * that occurs on or after the specified starting index. If no such

     * bit exists then {@code -1} is returned.
java.util.BitSet.set(int, int)
     * Sets the bits from the specified {@code fromIndex} (inclusive) to the

     * specified {@code toIndex} (exclusive) to {@code true}.
java.util.BitSet.clear(int, int)
     * Sets the bits from the specified {@code fromIndex} (inclusive) to the

     * specified {@code toIndex} (exclusive) to {@code false}.
java.util.BitSet.cardinality()

     * Returns the number of bits set to {@code true} in this {@code BitSet}.
public int countPrimes(int n) { BitSet bs = new BitSet(n); bs.set(0); bs.set(1); int ind = 0, count = 0; while(ind < n){ ind = bs.nextClearBit(ind + 1); if(ind >= n) return count; count++; for(int i = 2 * ind; i < n; i += ind) bs.set(i); } return count; }

public int countPrimes(int n) {
    if (n <= 1) {
        return 0;
    }

    BitSet set = new BitSet(n);
    set.set(0, 2);

    for (int i = 2; i < n; i++) {
        if (!set.get(i)) {
            for (int j = i*2; j < n; j+=i) {
                set.set(j);
            }    
        }

    }

    return n-set.cardinality();
}
https://gist.github.com/gcrfelix/4c11d5107f73ff1e33d5
    // new method: 10/28
    public int countPrimes(int n) {
        if(n <= 2) return 0;
        boolean[] notPrime = new boolean[n];
        int count = 0;
        for(int i=2; i<n; i++) {
            if(notPrime[i] == false) {
                count ++;
                for(int j=2; i*j<n; j++) {
                    notPrime[i*j] = true;
                }
            }
        }
        return count;
    }
    
    public int countPrimes(int n) {
        if(n <= 2) {
            return 0;
        }
        int count = 1;   // count = 1 because 2 is prime, add it to total first
        for(int i=3; i<n; i++) {
            if(isPrime(i)) {
                count ++;
            }
        }
        return count;
    }
    
    private boolean isPrime(int n) {
        if(n%2 == 0) {  // even numbers can't be prime except 2.
            return false;
        }
        for(int i=3; i*i<=n; i+=2) { // We start from 3 and add 2 to avoid even numbers(we should get 3, 5, 7 etc.).
            if(n%i == 0) {
                return false;
            }
        }
        return true;

    }


http://algobox.org/count-primes/


The accurate time complexity is O(n\log{\log{n}}) which is not trivial to show. But, it is easy to show a complexity of O(n\log{n}).
The complexity of the algorithm is O(n(logn)(loglogn)) bit operations.
How do you arrive at that?
That the complexity includes the loglogn term tells me that there is a sqrt(n) somewhere.

Suppose I am running the sieve on the first 100 numbers (n = 100), assuming that marking the numbers as composite takes constant time (array implementation), the number of times we use mark_composite() would be something like
n/2 + n/3 + n/5 + n/7 + ... + n/97        =      O(n^2)                         
And to find the next prime number (for example to jump to 7 after crossing out all the numbers that are multiples of 5), the number of operations would be O(n).
  1. Your n/2 + n/3 + n/5 + … n/97 is not O(n^2), because the number of terms is not constant. [Edit after your edit: O(n2) is too loose an upper bound.] A loose upper-bound is n(1+1/2+1/3+1/4+1/5+1/6+…1/n) (sum of reciprocals of all numbers up to n), which is O(n log n): see Harmonic number. A more proper upper-bound is n(1/2 + 1/3 + 1/5 + 1/7 + …), that is sum of reciprocals of primes up to n, which is O(n log log n). (See here or here.)
  2. The "find the next prime number" bit is only O(n) overall, amortized — you will move ahead to find the next number only n times in total, not per step. So this whole part of the algorithm takes only O(n).
So using these two you get an upper bound of O(n log log n) + O(n) = O(n log log n) arithmetic operations. If you count bit operations, since you're dealing with numbers up to n, they have about log n bits, which is where the factor of log n comes in, giving O(n log n log log n) bit operations.
public int countPrimes(int n) {
 if (n <= 2)
  return 0;
 
 // init an array to track prime numbers
 boolean[] primes = new boolean[n]; // we can use notPrimes
 for (int i = 2; i < n; i++)
  primes[i] = true;
 
 for (int i = 2; i <= Math.sqrt(n - 1); i++) {
 // or for (int i = 2; i <= n-1; i++) {
  if (primes[i]) {
   for (int j = i + i; j < n; j += i)
    primes[j] = false;
  }
 }
 
 int count = 0;
 for (int i = 2; i < n; i++) {
  if (primes[i])
   count++;
 }
 
 return count;
}
https://leetcode.com/discuss/35195/my-simple-java-solution
public int countPrimes(int n) { boolean[] notPrime = new boolean[n]; int count = 0; for (int i = 2; i < n; i++) { if (notPrime[i] == false) { count++; for (int j = 2; i*j < n; j++) { notPrime[i*j] = true; } } } return count; }
http://bookshadow.com/weblog/2015/04/27/leetcode-count-primes/
http://www.zhuangjingyang.com/leetcode-count-primes/
public int countPrimes(int n) { boolean notPrime[] = new boolean[n + 2]; notPrime[0] = notPrime[1] = true; for (int i = 2; i * i < n; i++) { if (!notPrime[i]) { int c = i * i; while (c < n) { notPrime[c] = true; c += i; } } } int ans = 0; for (int i = 0; i < n; i++) { if (!notPrime[i]) ans ++; } return ans; }

This solution exceeds time limit.
public int countPrimes(int n) {
    n = n-1;
 
    ArrayList<Integer> primes = new ArrayList<Integer>();
 
    if(n<=1) 
        return 0;
    if(n==2)
        return 1;
    if(n==3)
        return 2;
 
    primes.add(2);
    primes.add(3);
 
    for(int i=4; i<=n; i++){
        boolean isPrime = true;
        for(int p: primes){
            int m = i%p;
            if(m==0){
                isPrime = false;
                break;
            }
        }
 
        if(isPrime){
            primes.add(i);
        }
    }
 
    return primes.size();
}

http://blog.csdn.net/myself9711/article/details/45437229
Time Complexity: O(n*n)
class Solution:
    # @param {integer} n
    # @return {integer}
    def countPrimes(self, n):
        result_dict = {0: 0, 1: 1, 2: 2}
        for key in range(3, n+1):
            if self.isPrime(key):
                result_dict[key] = result_dict[key-1] + 1
            else:
                result_dict[key] = result_dict[key-1]
        return result_dict[n]


    def isPrime(self, n):
        if n == 0:
            return False
        if n == 1 or n == 2:
            return True
        for divide in range(2, n):
            if n % divide == 0:
                return False
        return True

http://www.programcreek.com/2014/04/leetcode-count-primes-java/
public int countPrimes(int n) {
    n = n-1;
 
    ArrayList<Integer> primes = new ArrayList<Integer>();
 
    if(n<=1) 
        return 0;
    if(n==2)
        return 1;
    if(n==3)
        return 2;
 
    primes.add(2);
    primes.add(3);
 
    for(int i=4; i<=n; i++){
        boolean isPrime = true;
        for(int p: primes){
            int m = i%p;
            if(m==0){
                isPrime = false;
                break;
            }
        }
 
        if(isPrime){
            primes.add(i);
        }
    }
 
    return primes.size();
}
Read full article from LeetCode – Count Primes (Java)

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts