CLRS 9.1.1 Finding Second Smallest Element


http://clrs.skanev.com/09/01/01.html
Show that the second smallest of n elements can be found with n+lgn2 comparisons in the worst case. (Hint:Also find the smallest element.)
We can compare the elements in a tournament fashion - we split them into pairs, compare each pair and then proceed to compare the winners in the same fashion. We need to keep track of each "match" the potential winners have participated in.
We select a winner in n1 matches. At this point, we know that the second smallest element is one of the lgn elements that lost to the smallest ­ each of them is smaller than the ones it has been compared to, prior to losing. In another lgn1 comparisons we can find the smallest element out of those. This is the answer we are looking for.
http://n1b-algo.blogspot.com/2008/12/finding-second-smallest-element.html
Finding the smallest element is trivial. The following code would find the smallest element using n-1 comparisons.
min = A[1]
for i = 2 to n
  if A[i] < min 
    min = A[i]
return min
The trivial algorithm to find the second minimum is to keep another variable (smin) along with min and if an element knocks out smin then check if it knocks out min and accordingly do the book-keeping. It can be done using 2n-3 comparisons and takes constant space. A point to observe is that the second smallest element is knocked out by the smallest one at some stage. If we preserve which element is knocked out by whom then finding the second smallest element would just require us to find the smallest amongst the elements knocked out by the smallest element. But in order to do that we need to build the algorithm in a way that we are playing a pair wise tournament. Lets say we play a tournament and knockout n/2 elements after n/2 comparisons. The recurrence relation looks like this:
T(n) = T(n/2) + n/2
Solving this recurrence gives that T(n) = n - 1. The height of the recurrence tree is lg n. So if we just check these elements knocked by root (min) we get the second minimum.For. E.x.
1   5 2   6  
\ /   \ /  
 1     2
  \   /
    1
As soon as we build the tree using n-1 comparisons, we can check the second largest amongst the number knocked out by 1. i.e. 2, 5. so the second minimum is 2. The number of comparison is n + ceil(log n) - 2, where log is taken to the base 2. We implement this algorithm by maintaining a list of indices knocked by an element. The python code is towards the end of this post. 

Another algorithm that is very easy to implement but sadly takes 2n - 2logn - 1 in terms of array element comparisons. Simply build a min heap (rooted at 1). Return the smaller of numbers at index 2 or 3 in the array. The cost of min heap building is = 2 * [n/4 + 2n/8 + ...... + (logn - 1) * n / 2^logn]. The solution to this arithmetic - geometric series is 2n - 2logn - 2. Comparing elements at 2nd and 3rd index adds one to the cost. Its very easy to implement though.
https://github.com/n1balgo/algo/blob/master/second_smallest.py

# number of comparisons
num_compare = 0
# indexes that are to be compared
idx = range(0,len(arr))
# list of knockout for all elements
knockout = [[] for i in idx]
# play tournaments, until we have only one node left
while len(idx) > 1:
# index of nodes that win this tournament
idx1 = []
# nodes in idx odd, if yes then last automatically goes to next round
odd = len(idx) % 2
# iterate over even indexes, as we do a paired tournament
for i in xrange(0, len(idx) - odd, 2):
# first index
i0 = idx[i]
# second index
i1 = idx[i+1]
# update num comparisons
num_compare += 1
# perform tournament
if arr[i0] < arr[i1]:
# i0 qualifies for next round
idx1.append(i0)
# add arr[i1] to knockout list of i0
knockout[i0].append(arr[i1])
else:
# i1 qualifies for next round
idx1.append(i1)
# add arr[i0] to knockout list of i1
knockout[i1].append(arr[i0])
# last element goes to next round
if odd == 1:
idx1.append(idx[i+2])
# perform new tournament
idx = idx1
print "Smallest element =", arr[idx[0]]
print "Total comparisons =", num_compare
print "Nodes knocked off by the smallest =", knockout[idx[0]], "\n"
# compute second smallest
a = knockout[idx[0]]
if len(a) > 0:
v = a[0]
for i in xrange(1,len(a)):
num_compare += 1
if v > a[i]: v = a[i]
print "Second smallest element =", v
print "Total comparisons =", num_compare

https://github.com/n1balgo/algo/blob/master/second_smallest_linkedlist.py
http://ripcrixalis.blog.com/2011/02/21/clrs-9-1-minimum-and-maximum/
https://github.com/gzc/CLRS/blob/master/C09-Medians-and-Order-Statistics/exercise_code/second-smallest.cpp

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts