CLRS 9-2 - Weighted Median


https://en.wikipedia.org/wiki/Weighted_median
For n distinct elements x_1, x_2,...,x_n with positive weights w_1, w_2,...,w_n such that \sum_{i=1}^n w_i = 1, the weighted median is the element x_k satisfying: \sum_{x_i < x_k} w_i < 1/2  and \sum_{x_i > x_k} w_i \le 1/2
http://blog.csdn.net/sr_19930829/article/details/40793715
For n elements x1, x2, ..., xn with positive integer weights w1, w2, ..., wn. The weighted median is the element xk satisfying
 and  , S indicates 
Can you compute the weighted median in O(n) worst-case?

输入

There are several test cases. For each case, the first line contains one integer n(1 ≤  n ≤ 10^7) — the number of elements in the sequence. The following line contains n integer numbers xi (0 ≤ xi ≤ 10^9). The last line contains n integer numbers wi (0 < wi < 10^9).

输出

One line for each case, print a single integer number— the weighted median of the sequence.

示例输入

7
10 35 5 10 15 5 20
10 35 5 10 15 5 20

示例输出

20

提示

The S which indicates the sum of all weights may be exceed a 32-bit integer. If S is 5,  equals 2.5.
int n;

struct Node
{
    int x,w;
}node[maxn];

bool cmp(Node a,Node b)
{
    if(a.x<b.x)
        return true;
    return false;
}


int main()
{
    while(scanf("%d",&n)!=EOF)
    {
        long long sum=0;
        for(int i=1;i<=n;i++)
            scanf("%d",&node[i].x);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&node[i].w);
            sum+=node[i].w;
        }
        long double S=sum*0.5;
        sort(node+1,node+1+n,cmp);
        long long xiao=0,da=0;
        int ans;
        for(int i=1;i<=n-1;i++)
        {
            xiao+=node[i].w;
            da=sum-xiao-node[i+1].w;
            if(xiao<S&&da<=S)
            {
                ans=node[i+1].x;
                break;
            }
        }
        cout<<ans<<endl;
    }
    return 0;
}
http://mycodebattle.github.io/2015/02/SDUT-2886/
LL QuickSort(int l, int r, LL small, LL large)
{
int index = l, pivot = arr[l].X;
swap(arr[l], arr[r]);
for (int i = l; i < r; i++)
if (arr[i].X < pivot) swap(arr[index++], arr[i]);
swap(arr[index], arr[r]);
LL sm = 0, equ = 0, big = 0;
for (int i = l; i <= r; i++)
{
if (arr[i].X < pivot) sm += arr[i].Y;
else if (arr[i].X == pivot) equ += arr[i].Y;
else big += arr[i].Y;
}
if ((small+sm)*2 < sum && (large+big)*2 <= sum) return pivot;
if ((small+sm)*2 >= sum) return QuickSort(l, index-1, small, large+equ+big);
while (index < r && arr[index].X == arr[index+1].X) index++;
if ((large+big)*2 > sum) return QuickSort(index+1, r, small+equ+sm, large);
}
int main()
{
//ROP;
int n;
while (~scanf("%d", &n))
{
sum = 0;
for (int i = 0; i < n; i++)
scanf("%d", &arr[i].X);
for (int i = 0; i < n; i++)
{
scanf("%d", &arr[i].Y);
sum += arr[i].Y;
}
printf("%lld\n", QuickSort(0, n-1, 0, 0));
}
return 0;
}

https://en.wikipedia.org/wiki/Weighted_median
Weighted median can be computed by sorting the set of numbers and finding the smallest numbers which sums to half the weight of total weight. This algorithm takes O(n \log n) time. There is a better approach to find weighted median using a modified selection algorithm
WeightedMedian(a[1..n], p, r)
  //base case for single element
  if r = p
    return a[p]
  //base case for two elements
  //make sure we return lower median
  if r-p = 1
    if a[p].w >= a[r].w
      return a[p]
    else return a[r]
  //partition around pivot r
  q = partition(a, p, r)
  wl, wg = sum weights of partitions (p, q-1), (q+1, r)
  //if partitions are balanced then we are done
  if wl and wg both < 1/2
    return a[q]
  else 
    //increase pivot weight by the amount of partition we eliminate
    if wl > wg
      a[q].w += wg
      //recurse on pivot inclusively 
      WeightedMedian(a, p, q)
    else
      a[q].w += wl
      WeightedMedian(a, q, r)
As the recursive call in inclusive of median, recurrence relation is,
T(n) = T(n/2 + 1) + O(n)
Which yields O(n) runtime.
https://github.com/gzc/CLRS/blob/master/C09-Medians-and-Order-Statistics/problem.md
https://github.com/gzc/CLRS/blob/master/C09-Medians-and-Order-Statistics/problems/weighted_median.py

def select(items, n):
med = median(items)
smaller = [item for item in items if item < med]
larger = [item for item in items if item > med]
if len(smaller) == n:
return med
elif len(smaller) > n:
return select(smaller, n)
else:
return select(list(larger), n - len(smaller) - 1)
def median(items):
def median_index(n):
if n % 2:
return n // 2
else:
return n // 2 - 1
def partition(items, element):
i = 0
for j in range(len(items) - 1):
if items[j] == element:
items[j], items[-1] = items[-1], items[j]
if items[j] < element:
items[i], items[j] = items[j], items[i]
i += 1
items[i], items[-1] = items[-1], items[i]
return i
def select(items, n):
if len(items) <= 1:
return items[0]
medians = []
for i in range(0, len(items), 5):
group = sorted(items[i:i + 5])
items[i:i + 5] = group
median = group[median_index(len(group))]
medians.append(median)
pivot = select(medians, median_index(len(medians)))
index = partition(items, pivot)
if n == index:
return items[index]
elif n < index:
return select(items[:index], n)
else:
return select(items[index + 1:], n - index - 1)
return select(items[:], median_index(len(items)))
def weighted_median(items, w_items, start, end):
def linear_weighted_median(items, start, end):
med = median(items)
smaller = [item for item in items if item < med]
larger = [item for item in items if item > med]
leftsum = 0
rightsum = 0
for i in range(len(smaller)):
leftsum += m[smaller[i]]
for i in range(len(smaller)):
rightsum += m[larger[i]]
print leftsum,rightsum
if leftsum < 0.5 and rightsum <= 0.5:
return med
if leftsum >= 0.5:
m[med] += rightsum
smaller.append(med)
return linear_weighted_median(smaller, start, start+len(smaller)-1)
else:
m[med] += leftsum
larger.insert(0, med)
return linear_weighted_median(larger, start+len(smaller)+1, end)
m = dict()
for i in range(len(items)):
m[items[i]] = w_items[i]
return linear_weighted_median(items, start, end)
weighted_array = [0.3,0.3,0.1,0.05,0.25]
array = [5,4,0,3,2]
print weighted_median(array, weighted_array, 0, 4)
http://clrs.skanev.com/09/problems/02.html

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts