geeksforgeeks: Searching for Patterns


geeksforgeeks: Searching for Patterns
Given a text txt[0..n-1] and a pattern pat[0..m-1], write a function search(char pat[], char txt[]) that prints all occurrences of pat[] in txt[]. You may assume that n > m.

Naive Pattern Searching: O(NM)
Slide the pattern over text one by one and check for a match. If a match is found, then slides by 1 again to check for subsequent matches.
void search(char *pat, char *txt)
{
    int M = strlen(pat);
    int N = strlen(txt);  
    /* A loop to slide pat[] one by one */
    for (int i = 0; i <= N - M; i++)
    {
        int j;
  
        /* For current index i, check for pattern match */
        for (j = 0; j < M; j++)
        {
            if (txt[i+j] != pat[j])
                break;
        }
        if (j == M)  // if pat[0...M-1] = txt[i, i+1, ...i+M-1]
        {
           printf("Pattern found at index %d \n", i);
        }
    }
}
Searching for Patterns | Set 2 (KMP Algorithm)
The KMP matching algorithm uses degenerating property (pattern having same sub-patterns appearing more than once in the pattern) of the pattern and improves the worst case complexity to O(n). The basic idea behind KMP’s algorithm is: whenever we detect a mismatch (after some matches), we already know some of the characters in the text (since they matched the pattern characters prior to the mismatch). We take advantage of this information to avoid matching the characters that we know will anyway match.
KMP algorithm does some preprocessing over the pattern pat[] and constructs an auxiliary array lps[] of size m (same as size of pattern). Here name lps indicates longest proper prefix which is also suffix.. For each sub-pattern pat[0…i] where i = 0 to m-1, lps[i] stores length of the maximum matching proper prefix which is also a suffix of the sub-pattern pat[0..i].
   lps[i] = the longest proper prefix of pat[0..i] 
              which is also a suffix of pat[0..i]. 
Examples:
For the pattern “AABAACAABAA”, lps[] is [0, 1, 0, 1, 2, 0, 1, 2, 3, 4, 5]
Java Implementation:
http://www.sanfoundry.com/java-program-knuth-morris-pratt-algorithm/
void computeLPSArray(char *pat, int M, int *lps)
{
    int len = 0;  // lenght of the previous longest prefix suffix
    int i;
    lps[0] = 0; // lps[0] is always 0
    i = 1;
    // the loop calculates lps[i] for i = 1 to M-1
    while (i < M)
    {
       if (pat[i] == pat[len])
       {
         len++;
         lps[i] = len;
         i++;
       }
       else // (pat[i] != pat[len])
       {
         if (len != 0)
         {
           // This is tricky. Consider the example AAACAAAA and i = 7.
           len = lps[len-1];
           // Also, note that we do not increment i here
         }
         else // if (len == 0)
         {
           lps[i] = 0;
           i++;
         }
       }
    }
}
void KMPSearch(char *pat, char *txt)
{
    int M = strlen(pat);
    int N = strlen(txt);
    // create lps[] that will hold the longest prefix suffix values for pattern
    int *lps = (int *)malloc(sizeof(int)*M);
    int j  = 0;  // index for pat[]
    // Preprocess the pattern (calculate lps[] array)
    computeLPSArray(pat, M, lps);
    int i = 0;  // index for txt[]
    while (i < N)
    {
      if (pat[j] == txt[i])
      {
        j++;
        i++;
      }
      if (j == M)
      {
        printf("Found pattern at index %d \n", i-j);
        j = lps[j-1];
      }
      // mismatch after j matches
      else if (i < N && pat[j] != txt[i])
      {
        // Do not match lps[0..lps[j-1]] characters,
        // they will match anyway
        if (j != 0)
         j = lps[j-1];
        else
         i = i+1;
      }
    }
    free(lps); // to avoid memory leak
}
Rabin-Karp Algorithm
Like the Naive Algorithm, Rabin-Karp algorithm also slides the pattern one by one. But unlike the Naive algorithm, Rabin Karp algorithm matches the hash value of the pattern with the hash value of current substring of text, and if the hash values match then only it starts matching individual characters. So Rabin Karp algorithm needs to calculate hash values for following strings.
So Rabin Karp algorithm needs to calculate hash values for following strings.
1) Pattern itself.
2) All the substrings of text of length m.
Since we need to efficiently calculate hash values for all the substrings of size m of text, we must have a hash function which has following property.
Hash at the next shift must be efficiently computable from the current hash value and next character in text or we can say hash(txt[s+1 .. s+m]) must be efficiently computable from hash(txt[s .. s+m-1])and txt[s+m] i.e., hash(txt[s+1 .. s+m])rehash(txt[s+m], hash(txt[s .. s+m-1]) and rehash must be O(1) operation.
Java version:


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts