Longest subarray whose sum <= k
Longest subarray whose sum
Given an array
of
numbers and a key
, find the longest subarray of
for which the subarray sum is less than or equal to
.
In the following we describe an algorithm with time complexity
.
Algorithm LONGESTSUBARRAY(
,
)
Longest_subarray_k_improved.cpp LongestSubarrayK.java
Longest subarray whose sum
Given an array
In the following we describe an algorithm with time complexity
Algorithm LONGESTSUBARRAY(
Input: An array
and a real number 
Output: A pair of indices
, maximizing
, subject to ![\sum_{t = i}^j A[t] \leq k \sum_{t = i}^j A[t] \leq k](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s1h1ylbCwHxGRq1rv_dPevz-wy2U8h6zXaPpXlspt4QelR1WEt7cb1WNucMB_6l1L5y1s4FosLzmVI7_6PwqaST7YQWy606ghehUgh1Owpvbj75LYxk9aqN7i0283yzYktIDbQZLBL7ossn7C0vOPRb33pMs-K1CtjoREMQycJjnVHKg=s0-d)
1. Compute the array
of partial sums, where
is the prefix sum of the first
numbers in
.
.
2.
3.
4.
5. for
down to 0
if![S[i] < {\rm smallest} S[i] < {\rm smallest}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vXLY1eB7cnPQVNfOE8Dh-3br1ht_GaeRF-zJJRjj1pe5Vm4gNccKv7Xs22qo7Xuk7vJ5Qrlj8dPfASnN5u1gsXnDYYGEJnp48b7keqj24Jz6iShQvH4gnqNGo9UGL9FMlFR5mG0WJRFsc8as5xutaNZv5g7s4eEQ5AVw=s0-d)
![M \leftarrow M \cup \{(S[i], i)\} M \leftarrow M \cup \{(S[i], i)\}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sZmZgqxCWCxF2pMuwOKrYhkumdvZM35dOOTZRvkeJmIEklE5M3-YYCdibmQdsJYf4m5Av4hV_P4aZOMkrXHTAISOb-WWVjoX-MF90Tt1n46549D7EzTIAA-bIVpkyzeuclbe_miNy33alHwKve3IX_r8K1cF5d8Qt1MZKL2Vn-LAkiS9xwhGxWHWY=s0-d)
![{\rm smallest} \leftarrow S[i] {\rm smallest} \leftarrow S[i]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_uL00fTssyRmkMTAHLgi4Bl5Sj3DA6-1nR2LSHn06MGK2zoWE7slB5w5cRFyPX7wdpz8G-3mRgFeyQr9WrfgdAWI8Bg6jXvGeRDn7qREVLd7LkdI5u3v5lF_hZakNq8JNGBSY4DO6SF2_-7Wqh42ok-Ty1QantSuKa79dnvbZacYgKH=s0-d)
6.
7. for
up to 
if![S[i] > {\rm current} S[i] > {\rm current}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sOgq_y9jiQ7CB0S9O8sAsPrOkeC1jBeE4JwFinMd5cn_K91QQDbUPRhLLyifwLtFMX_ajoBj-4y8roMFey-EABid2xzdd_wpqjlhDoseXVHxmhQeqL9s1Q5yalk4YGoLgRKdkcRrUvMJ9qGT-L7w4cF8h_mxWXQClI=s0-d)
Use binary search to look for the rightmost element
in
such that
. If such an element exists, update
to
if 
![{\rm current} \leftarrow S[i] {\rm current} \leftarrow S[i]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vBC4MjsDsXQ7M5shuEb_rfrv4WEi8p-nfMMMWJch0iJgjnkoPDu2rcJtVDzOmONNZ1mgWde5-mBJVMo0Km4egEza-rkcp_OXyKj8LOIhAW1OimTPFDAnk-qQ28eF4e-0f4qjM6oXeIKeIUVWaoJnCA6XtwKjhaO0IAEhIF0C2AgPBf=s0-d)
8. return
Find the longest subarray whose sum <= kOutput: A pair of indices
1. Compute the array
2.
3.
4.
5. for
if
6.
7. for
if
Use binary search to look for the rightmost element
8. return
Longest_subarray_k_improved.cpp LongestSubarrayK.java
public static Pair<Integer, Integer> findLongestSubarrayLessEqualK(
List<Integer> A, int k) {
// Build the prefix sum according to A.
List<Integer> prefixSum = new ArrayList<>();
int sum = 0;
for (int a : A) {
sum += a;
prefixSum.add(sum);
}
List<Integer> minPrefixSum = new ArrayList<>(prefixSum);
for (int i = minPrefixSum.size() - 2; i >= 0; --i) {
minPrefixSum.set(i,
Math.min(minPrefixSum.get(i), minPrefixSum.get(i + 1)));
}
Pair<Integer, Integer> arrIdx = new Pair<>(0,
upperBound2(minPrefixSum, k) - 1);
for (int i = 0; i < prefixSum.size(); ++i) {
int idx = upperBound2(minPrefixSum, k + prefixSum.get(i)) - 1;
if (idx - i - 1 > arrIdx.getSecond() - arrIdx.getFirst()) {
arrIdx = new Pair<>(i + 1, idx);
}
}
return arrIdx;
}
Correctness of the Algorithm
The key is to observe the following two facts.
Claim: (1) If two indices
satisfies that
, then
cannot appear in an optimum solution; (2) If two indices
satisfies that
, then
cannot appear in an optimum solution.
Proof: For any index
,
, note that the subarray sum of
is less than the subarray sum of
, and the length of the subarray $A[i..r']$ is greater than the length of the subarray
(although both length might be negative, but the statement still holds). Therefore,
is preferable over
. This is also the reason why we compute the strictly increasing sequence of
.
The second statement follows a similar reasoning.
Claim: (1) If two indices
Proof: For any index
The second statement follows a similar reasoning.
Time Complexity and Space Complexity
Step 1, computing the prefix sums, takes
time. Step 4, computing the array
, takes
time. Step 7 takes
time as each iteration takes
time.
Please read full article from Longest subarray whose sum <= kStep 1, computing the prefix sums, takes