Trie | (Insert and Search) | GeeksforGeeks


http://hehejun.blogspot.com/2015/02/data-structuretrie.html
Trie比哈希和BST更快,尤其是在string很多的情况下
public class Trie<Value> {

    private class Node {
        private Value val;
        private TreeMap<Character, Node> children; // use hashmap or char[256]
       
        public Node() {
            val = null;
            children = new TreeMap<Character, Node>();
        }
    }
   
    private Node root;
   
    public Trie() {
        root = null;
    }
   
    public boolean containsKey(String key) {
        Node node = getNode(key);
        if (node == null)
            return false;
        return node.val != null;
    }
   
    public void put(String key, Value val) {
        root = put(root, key, val, 0);
    }
   
    private Node put(Node node, String key, Value val, int index) {
        if (node == null)
            node = new Node();
        if (index == key.length()) {
            node.val = val;
            return node;
        }
        Node next = put(node.children.get(key.charAt(index)), key, val, index + 1);
        node.children.put(key.charAt(index), next);
        return node;
    }
   
    public Value get(String key) {
        Node node = getNode(key);
        return node == null? null: node.val;
    }
   
    private Node getNode(String key) {
        int len = key.length();
        Node node = root;
        for (int i = 0; i < len; i++) {
            if (node == null)
                return null;
            node = node.children.get(key.charAt(i));
        }
        return node;
    }
   
    public void delete(String key) {
        root = delete(root, key, 0);
    }
   
    private Node delete(Node node, String key, int len) {
        if (node == null)
            return null;
        if(key.length() == len) {
            //it key is not a word in trie
            if (node.val == null)
                return node;
            else {
                //if the node has children
                if (node.children.size() > 0) {
                    node.val = null;
                    return node;
                } else
                    return null;
            }
        }
        Node next = delete(node.children.get(key.charAt(len)), key, len + 1);
        if (next == null) {
            //if word is not in the trie
            if (!node.children.containsKey(key.charAt(len)))
                return node;
            else {
                //if has more the one children or this node has value(it is a word in trie)
                if (node.children.size() > 1 || node.val != null) {
                    node.children.remove(key.charAt(len));
                    return node;
                } else
                    return null;
            }
        } else
            return node;
    }
   
    public Iterable<String> keys() {
        LinkedList<String> list = new LinkedList<String>();
        collect(root, list, "");
        return list;
    }
   
    private void collect(Node node, LinkedList<String> list, String str) {
        if (node == null)
            return;
        if (node.val != null)
            list.add(new String(str));
        Iterator<Entry<Character, Node>> iter = node.children.entrySet().iterator();
        while (iter.hasNext()) {
            Entry<Character, Node> entry = iter.next();
            collect(entry.getValue(), list, str + entry.getKey());
        }
    }
   
    public Iterable<String> keysWithPrefix(String prefix) {
        LinkedList<String> list = new LinkedList<String>();
        Node node = getNode(prefix);
        collect(node, list, prefix);
        return list;
    }
   
    public String longestPrefixOf(String key) {
        int length = search(root, key, 0);
        return key.substring(0, length);
    }
   
    private int search(Node node, String key, int len) {
        if (node == null)
            return len;
        if (key.length() == len)
            return len;
        Node next = node.children.get(key.charAt(len));
        if (next == null)
            return len;
        return search(next, key, len + 1);
           
    }
   
    public String longestKeyAsPrefixOf(String key) {
        int length = search(root, key, 0, 0);
        return key.substring(0, length);
    }
   
    private int search(Node node, String key, int longestLen, int currLen) {
        if (node == null)
            return longestLen;
        if (node.val != null)
            longestLen = currLen;
        if (key.length() == currLen)
            return longestLen;
        Node next = node.children.get(key.charAt(currLen));
        return search(next, key, longestLen, currLen + 1);
    }
}
Trie | (Insert and Search) | GeeksforGeeks
Trie is an efficient information retrieval data structure. Using trie, search complexities can be brought to optimal limit (key length).  Using trie, we can search the key in O(M) time. However the penalty is on trie storage requirements.
struct trie_node
{
    int value; /* Used to mark leaf nodes */
    trie_node_t *children[ALPHABET_SIZE];
};
void insert(trie_t *pTrie, char key[])
{
    int level;
    int length = strlen(key);
    int index;
    trie_node_t *pCrawl;
    pTrie->count++;
    pCrawl = pTrie->root;
    for( level = 0; level < length; level++ )
    {
        index = CHAR_TO_INDEX(key[level]);
        if( !pCrawl->children[index] )
        {
            pCrawl->children[index] = getNode();
        }
        pCrawl = pCrawl->children[index];
    }
    // mark last node as leaf
    pCrawl->value = pTrie->count;
}
// Returns non zero, if key presents in trie
int search(trie_t *pTrie, char key[])
{
    int level;
    int length = strlen(key);
    int index;
    trie_node_t *pCrawl;
    pCrawl = pTrie->root;
    for( level = 0; level < length; level++ )
    {
        index = CHAR_TO_INDEX(key[level]);
        if( !pCrawl->children[index] )
        {
            return 0;
        }
        pCrawl = pCrawl->children[index];
    }
    return (0 != pCrawl && pCrawl->value);
}
Trie | (Delete)
During delete operation we delete the key in bottom up manner using recursion. The following are possible conditions when deleting key from trie,
  1. Key may not be there in trie. Delete operation should not modify trie.
  2. Key present as unique key (no part of key contains another key (prefix), nor the key itself is prefix of another key in trie). Delete all the nodes.
  3. Key is prefix key of another long key in trie. Unmark the leaf node.
  4. Key present in trie, having atleast one other key as prefix key. Delete nodes from end of key until first leaf node of longest prefix key.
bool deleteHelper(trie_node_t *pNode, char key[], int level, int len)
{
    if( pNode )
    {
        // Base case
        if( level == len )
        {
            if( pNode->value )
            {
                // Unmark leaf node
                pNode->value = 0;
                // If empty, node to be deleted
                if( isItFreeNode(pNode) )
                {
                    return true;
                }
                return false;
            }
        }
        else // Recursive case
        {
            int index = INDEX(key[level]);
            if( deleteHelper(pNode->children[index], key, level+1, len) )
            {
                // last node marked, delete it
                FREE(pNode->children[index]);
                // recursively climb up, and delete eligible nodes
                return ( !leafNode(pNode) && isItFreeNode(pNode) );
            }
        }
    }
    return false;
}
int isItFreeNode(trie_node_t *pNode)
{
    int i;
    for(i = 0; i < ALPHABET_SIZE; i++)
    {
        if( pNode->children[i] )
            return 0;
    }
    return 1;
}

int leafNode(trie_node_t *pNode)
{
    return (pNode->value != 0);
}
void deleteKey(trie_t *pTrie, char key[])
{
    int len = strlen(key);
    if( len > 0 )
    {
        deleteHelper(pTrie->root, key, 0, len);
    }
}
Read full article from Trie | (Insert and Search) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts