http://hehejun.blogspot.com/2015/02/data-structuretrie.html
Trie比哈希和BST更快,尤其是在string很多的情况下
public class Trie<Value> {
private class Node {
private Value val;
private TreeMap<Character, Node> children; // use hashmap or char[256]
public Node() {
val = null;
children = new TreeMap<Character, Node>();
}
}
private Node root;
public Trie() {
root = null;
}
public boolean containsKey(String key) {
Node node = getNode(key);
if (node == null)
return false;
return node.val != null;
}
public void put(String key, Value val) {
root = put(root, key, val, 0);
}
private Node put(Node node, String key, Value val, int index) {
if (node == null)
node = new Node();
if (index == key.length()) {
node.val = val;
return node;
}
Node next = put(node.children.get(key.charAt(index)), key, val, index + 1);
node.children.put(key.charAt(index), next);
return node;
}
public Value get(String key) {
Node node = getNode(key);
return node == null? null: node.val;
}
private Node getNode(String key) {
int len = key.length();
Node node = root;
for (int i = 0; i < len; i++) {
if (node == null)
return null;
node = node.children.get(key.charAt(i));
}
return node;
}
public void delete(String key) {
root = delete(root, key, 0);
}
private Node delete(Node node, String key, int len) {
if (node == null)
return null;
if(key.length() == len) {
//it key is not a word in trie
if (node.val == null)
return node;
else {
//if the node has children
if (node.children.size() > 0) {
node.val = null;
return node;
} else
return null;
}
}
Node next = delete(node.children.get(key.charAt(len)), key, len + 1);
if (next == null) {
//if word is not in the trie
if (!node.children.containsKey(key.charAt(len)))
return node;
else {
//if has more the one children or this node has value(it is a word in trie)
if (node.children.size() > 1 || node.val != null) {
node.children.remove(key.charAt(len));
return node;
} else
return null;
}
} else
return node;
}
public Iterable<String> keys() {
LinkedList<String> list = new LinkedList<String>();
collect(root, list, "");
return list;
}
private void collect(Node node, LinkedList<String> list, String str) {
if (node == null)
return;
if (node.val != null)
list.add(new String(str));
Iterator<Entry<Character, Node>> iter = node.children.entrySet().iterator();
while (iter.hasNext()) {
Entry<Character, Node> entry = iter.next();
collect(entry.getValue(), list, str + entry.getKey());
}
}
public Iterable<String> keysWithPrefix(String prefix) {
LinkedList<String> list = new LinkedList<String>();
Node node = getNode(prefix);
collect(node, list, prefix);
return list;
}
public String longestPrefixOf(String key) {
int length = search(root, key, 0);
return key.substring(0, length);
}
private int search(Node node, String key, int len) {
if (node == null)
return len;
if (key.length() == len)
return len;
Node next = node.children.get(key.charAt(len));
if (next == null)
return len;
return search(next, key, len + 1);
}
public String longestKeyAsPrefixOf(String key) {
int length = search(root, key, 0, 0);
return key.substring(0, length);
}
private int search(Node node, String key, int longestLen, int currLen) {
if (node == null)
return longestLen;
if (node.val != null)
longestLen = currLen;
if (key.length() == currLen)
return longestLen;
Node next = node.children.get(key.charAt(currLen));
return search(next, key, longestLen, currLen + 1);
}
}
Trie | (Insert and Search) | GeeksforGeeks
Trie比哈希和BST更快,尤其是在string很多的情况下
public class Trie<Value> {
private class Node {
private Value val;
private TreeMap<Character, Node> children; // use hashmap or char[256]
public Node() {
val = null;
children = new TreeMap<Character, Node>();
}
}
private Node root;
public Trie() {
root = null;
}
public boolean containsKey(String key) {
Node node = getNode(key);
if (node == null)
return false;
return node.val != null;
}
public void put(String key, Value val) {
root = put(root, key, val, 0);
}
private Node put(Node node, String key, Value val, int index) {
if (node == null)
node = new Node();
if (index == key.length()) {
node.val = val;
return node;
}
Node next = put(node.children.get(key.charAt(index)), key, val, index + 1);
node.children.put(key.charAt(index), next);
return node;
}
public Value get(String key) {
Node node = getNode(key);
return node == null? null: node.val;
}
private Node getNode(String key) {
int len = key.length();
Node node = root;
for (int i = 0; i < len; i++) {
if (node == null)
return null;
node = node.children.get(key.charAt(i));
}
return node;
}
public void delete(String key) {
root = delete(root, key, 0);
}
private Node delete(Node node, String key, int len) {
if (node == null)
return null;
if(key.length() == len) {
//it key is not a word in trie
if (node.val == null)
return node;
else {
//if the node has children
if (node.children.size() > 0) {
node.val = null;
return node;
} else
return null;
}
}
Node next = delete(node.children.get(key.charAt(len)), key, len + 1);
if (next == null) {
//if word is not in the trie
if (!node.children.containsKey(key.charAt(len)))
return node;
else {
//if has more the one children or this node has value(it is a word in trie)
if (node.children.size() > 1 || node.val != null) {
node.children.remove(key.charAt(len));
return node;
} else
return null;
}
} else
return node;
}
public Iterable<String> keys() {
LinkedList<String> list = new LinkedList<String>();
collect(root, list, "");
return list;
}
private void collect(Node node, LinkedList<String> list, String str) {
if (node == null)
return;
if (node.val != null)
list.add(new String(str));
Iterator<Entry<Character, Node>> iter = node.children.entrySet().iterator();
while (iter.hasNext()) {
Entry<Character, Node> entry = iter.next();
collect(entry.getValue(), list, str + entry.getKey());
}
}
public Iterable<String> keysWithPrefix(String prefix) {
LinkedList<String> list = new LinkedList<String>();
Node node = getNode(prefix);
collect(node, list, prefix);
return list;
}
public String longestPrefixOf(String key) {
int length = search(root, key, 0);
return key.substring(0, length);
}
private int search(Node node, String key, int len) {
if (node == null)
return len;
if (key.length() == len)
return len;
Node next = node.children.get(key.charAt(len));
if (next == null)
return len;
return search(next, key, len + 1);
}
public String longestKeyAsPrefixOf(String key) {
int length = search(root, key, 0, 0);
return key.substring(0, length);
}
private int search(Node node, String key, int longestLen, int currLen) {
if (node == null)
return longestLen;
if (node.val != null)
longestLen = currLen;
if (key.length() == currLen)
return longestLen;
Node next = node.children.get(key.charAt(currLen));
return search(next, key, longestLen, currLen + 1);
}
}
Trie | (Insert and Search) | GeeksforGeeks
Trie is an efficient information retrieval data structure. Using trie, search complexities can be brought to optimal limit (key length). Using trie, we can search the key in O(M) time. However the penalty is on trie storage requirements.
struct
trie_node
{
int
value; /* Used to mark leaf nodes */
trie_node_t *children[ALPHABET_SIZE];
};
void
insert(trie_t *pTrie,
char
key[])
{
int
level;
int
length =
strlen
(key);
int
index;
trie_node_t *pCrawl;
pTrie->count++;
pCrawl = pTrie->root;
for
( level = 0; level < length; level++ )
{
index = CHAR_TO_INDEX(key[level]);
if
( !pCrawl->children[index] )
{
pCrawl->children[index] = getNode();
}
pCrawl = pCrawl->children[index];
}
// mark last node as leaf
pCrawl->value = pTrie->count;
}
// Returns non zero, if key presents in trie
int
search(trie_t *pTrie,
char
key[])
{
int
level;
int
length =
strlen
(key);
int
index;
trie_node_t *pCrawl;
pCrawl = pTrie->root;
for
( level = 0; level < length; level++ )
{
index = CHAR_TO_INDEX(key[level]);
if
( !pCrawl->children[index] )
{
return
0;
}
pCrawl = pCrawl->children[index];
}
return
(0 != pCrawl && pCrawl->value);
}
During delete operation we delete the key in bottom up manner using recursion. The following are possible conditions when deleting key from trie,
- Key may not be there in trie. Delete operation should not modify trie.
- Key present as unique key (no part of key contains another key (prefix), nor the key itself is prefix of another key in trie). Delete all the nodes.
- Key is prefix key of another long key in trie. Unmark the leaf node.
- Key present in trie, having atleast one other key as prefix key. Delete nodes from end of key until first leaf node of longest prefix key.
bool
deleteHelper(trie_node_t *pNode,
char
key[],
int
level,
int
len)
{
if
( pNode )
{
// Base case
if
( level == len )
{
if
( pNode->value )
{
// Unmark leaf node
pNode->value = 0;
// If empty, node to be deleted
if
( isItFreeNode(pNode) )
{
return
true
;
}
return
false
;
}
}
else
// Recursive case
{
int
index = INDEX(key[level]);
if
( deleteHelper(pNode->children[index], key, level+1, len) )
{
// last node marked, delete it
FREE(pNode->children[index]);
// recursively climb up, and delete eligible nodes
return
( !leafNode(pNode) && isItFreeNode(pNode) );
}
}
}
return
false
;
}
int
isItFreeNode(trie_node_t *pNode)
{
int
i;
for
(i = 0; i < ALPHABET_SIZE; i++)
{
if
( pNode->children[i] )
return
0;
}
return
1;
}
int
leafNode(trie_node_t *pNode)
{
return
(pNode->value != 0);
}
void
deleteKey(trie_t *pTrie,
char
key[])
{
int
len =
strlen
(key);
if
( len > 0 )
{
deleteHelper(pTrie->root, key, 0, len);
}
}