Wednesday, May 16, 2018

LeetCode 745 - Prefix and Suffix Search


https://leetcode.com/problems/prefix-and-suffix-search/description/
Given many wordswords[i] has weight i.
Design a class WordFilter that supports one function, WordFilter.f(String prefix, String suffix). It will return the word with given prefix and suffix with maximum weight. If no word exists, return -1.
Examples:
Input:
WordFilter(["apple"])
WordFilter.f("a", "e") // returns 0
WordFilter.f("b", "") // returns -1
Note:
  1. words has length in range [1, 15000].
  2. For each test case, up to words.length queries WordFilter.f may be made.
  3. words[i] has length in range [1, 10].
  4. prefix, suffix have lengths in range [0, 10].
  5. words[i] and prefix, suffix queries consist of lowercase letters only.

Consider the word 'apple'. For each suffix of the word, we could insert that suffix, followed by '#', followed by the word, all into the trie.
For example, we will insert '#apple', 'e#apple', 'le#apple', 'ple#apple', 'pple#apple', 'apple#apple' into the trie. Then for a query like prefix = "ap", suffix = "le", we can find it by querying our trie for le#ap.
  • Time Complexity: O(NK^2 + QK) where N is the number of words, K is the maximum length of a word, and Q is the number of queries.
  • Space Complexity: O(NK^2), the size of the trie.`
class WordFilter {
    TrieNode trie;
    public WordFilter(String[] words) {
        trie = new TrieNode();
        for (int weight = 0; weight < words.length; ++weight) {
            String word = words[weight] + "{";
            for (int i = 0; i < word.length(); ++i) {
                TrieNode cur = trie;
                cur.weight = weight;
                for (int j = i; j < 2 * word.length() - 1; ++j) {
                    int k = word.charAt(j % word.length()) - 'a';
                    if (cur.children[k] == null)
                        cur.children[k] = new TrieNode();
                    cur = cur.children[k];
                    cur.weight = weight;
                }
            }
        }
    }
    public int f(String prefix, String suffix) {
        TrieNode cur = trie;
        for (char letter: (suffix + '{' + prefix).toCharArray()) {
            if (cur.children[letter - 'a'] == null) return -1;
            cur = cur.children[letter - 'a'];
        }
        return cur.weight;
    }
}

class TrieNode {
    TrieNode[] children;
    int weight;
    public TrieNode() {
        children = new TrieNode[27];
        weight = 0;
    }
}



Say we are inserting the word apple. We could insert ('a', 'e'), ('p', 'l'), ('p', 'p'), ('l', 'p'), ('e', 'a') into our trie. Then, if we had equal length queries like prefix = "ap", suffix = "le", we could find the node trie['a', 'e']['p', 'l'] in our trie. This seems promising.
What about queries that aren't equal? We should just insert them like normal. For example, to capture a case like prefix = "app", suffix = "e", we could create nodes trie['a', 'e']['p', None]['p', None].
After inserting these pairs into our trie, our searches are straightforward.
  • Time Complexity: O(NK^2 + QK) where N is the number of words, K is the maximum length of a word, and Q is the number of queries.
  • Space Complexity: O(NK^2), the size of the trie.
class WordFilter {
    TrieNode trie;
    public WordFilter(String[] words) {
        trie = new TrieNode();
        int wt = 0;
        for (String word: words) {
            TrieNode cur = trie;
            cur.weight = wt;
            int L = word.length();
            char[] chars = word.toCharArray();
            for (int i = 0; i < L; ++i) {

                TrieNode tmp = cur;
                for (int j = i; j < L; ++j) {
                    int code = (chars[j] - '`') * 27;
                    if (tmp.children.get(code) == null)
                        tmp.children.put(code, new TrieNode());
                    tmp = tmp.children.get(code);
                    tmp.weight = wt;
                }

                tmp = cur;
                for (int k = L - 1 - i; k >= 0; --k) {
                    int code = (chars[k] - '`');
                    if (tmp.children.get(code) == null)
                        tmp.children.put(code, new TrieNode());
                    tmp = tmp.children.get(code);
                    tmp.weight = wt;
                }

                int code = (chars[i] - '`') * 27 + (chars[L - 1 - i] - '`');
                if (cur.children.get(code) == null)
                    cur.children.put(code, new TrieNode());
                cur = cur.children.get(code);
                cur.weight = wt;

            }
            wt++;
        }
    }

    public int f(String prefix, String suffix) {
        TrieNode cur = trie;
        int i = 0, j = suffix.length() - 1;
        while (i < prefix.length() || j >= 0) {
            char c1 = i < prefix.length() ? prefix.charAt(i) : '`';
            char c2 = j >= 0 ? suffix.charAt(j) : '`';
            int code = (c1 - '`') * 27 + (c2 - '`');
            cur = cur.children.get(code);
            if (cur == null) return -1;
            i++; j--;
        }
        return cur.weight;
    }
}

class TrieNode {
    Map<Integer, TrieNode> children;
    int weight;
    public TrieNode() {
        children = new HashMap();
        weight = 0;
    }
}



We use two tries to separately find all words that match the prefix, plus all words that match the suffix. Then, we try to find the highest weight element in the intersection of these sets.
Of course, these sets could still be large, so we might TLE if we aren't careful.

  • Time Complexity: O(NK + Q(N+K)) where N is the number of words, K is the maximum length of a word, and Q is the number of queries. If we use memoization in our solution, we could produce tighter bounds for this complexity, as the complex queries are somewhat disjoint.
  • Space Complexity: O(NK), the size of the tries.
class WordFilter {
    TrieNode trie1, trie2;
    public WordFilter(String[] words) {
        trie1 = new TrieNode();
        trie2 = new TrieNode();
        int wt = 0;
        for (String word: words) {
            char[] ca = word.toCharArray();

            TrieNode cur = trie1;
            cur.weight.add(wt);
            for (char letter: ca) {
                if (cur.children[letter - 'a'] == null)
                    cur.children[letter - 'a'] = new TrieNode();
                cur = cur.children[letter - 'a'];
                cur.weight.add(wt);
            }

            cur = trie2;
            cur.weight.add(wt);
            for (int j = ca.length - 1; j >= 0; --j) {
                char letter = ca[j];
                if (cur.children[letter - 'a'] == null)
                    cur.children[letter - 'a'] = new TrieNode();
                cur = cur.children[letter - 'a'];
                cur.weight.add(wt);
            }
            wt++;
        }
    }

    public int f(String prefix, String suffix) {
        TrieNode cur1 = trie1, cur2 = trie2;
        for (char letter: prefix.toCharArray()) {
            if (cur1.children[letter - 'a'] == null) return -1;
            cur1 = cur1.children[letter - 'a'];
        }
        char[] ca = suffix.toCharArray();
        for (int j = ca.length - 1; j >= 0; --j) {
            char letter = ca[j];
            if (cur2.children[letter - 'a'] == null) return -1;
            cur2 = cur2.children[letter - 'a'];
        }

        int ans = -1;
        for (int w1: cur1.weight)
            if (w1 > ans && cur2.weight.contains(w1))
                ans = w1;

        return ans;
    }
}

class TrieNode {
    TrieNode[] children;
    Set<Integer> weight;
    public TrieNode() {
        children = new TrieNode[26];
        weight = new HashSet();
    }
}

https://leetcode.com/problems/prefix-and-suffix-search/discuss/110044/Three-ways-to-solve-this-problem-in-Java
If f is more frequently than WordFilter, use method 1.
If space complexity is concerned, use method 2.
If the input string array might change frequently, use method 3.
< Method 1 >
WordFilter: Time = O(NL^2)
f: Time = O(1)
Space = O(NL^2)
Note: N is the size of input array and L is the max length of input strings.
class WordFilter {
    HashMap<String, Integer> map = new HashMap<>();

    public WordFilter(String[] words) {
        for(int w = 0; w < words.length; w++){
            for(int i = 0; i <= 10 && i <= words[w].length(); i++){
                for(int j = 0; j <= 10 && j <= words[w].length(); j++){
                    map.put(words[w].substring(0, i) + "#" + words[w].substring(words[w].length()-j), w);
                }
            }
        }
    }

    public int f(String prefix, String suffix) {
        return (map.containsKey(prefix + "#" + suffix))? map.get(prefix + "#" + suffix) : -1;
    }
}

< Method 2 >
WordFilter: Time = O(NL)
f: Time = O(N)
Space = O(NL)
class WordFilter {
    HashMap<String, List<Integer>> mapPrefix = new HashMap<>();
    HashMap<String, List<Integer>> mapSuffix = new HashMap<>();
    
    public WordFilter(String[] words) {
        
        for(int w = 0; w < words.length; w++){
            for(int i = 0; i <= 10 && i <= words[w].length(); i++){
                String s = words[w].substring(0, i);
                if(!mapPrefix.containsKey(s)) mapPrefix.put(s, new ArrayList<>());
                mapPrefix.get(s).add(w);
            }
            for(int i = 0; i <= 10 && i <= words[w].length(); i++){
                String s = words[w].substring(words[w].length() - i);
                if(!mapSuffix.containsKey(s)) mapSuffix.put(s, new ArrayList<>());
                mapSuffix.get(s).add(w);
            }
        }

    public int f(String prefix, String suffix) {
        
        if(!mapPrefix.containsKey(prefix) || !mapSuffix.containsKey(suffix)) return -1;
        List<Integer> p = mapPrefix.get(prefix);
        List<Integer> s = mapSuffix.get(suffix);
        int i = p.size()-1, j = s.size()-1;
        while(i >= 0 && j >= 0){
            if(p.get(i) < s.get(j)) j--;
            else if(p.get(i) > s.get(j)) i--;
            else return p.get(i);
        }
        return -1;
< Method 3 >
WordFilter: Time = O(1)
f: Time = O(NL)
Space = O(1)
class WordFilter {
    String[] input;
    public WordFilter(String[] words) {
        input = words;
    }
    public int f(String prefix, String suffix) {
        for(int i = input.length-1; i >= 0; i--){
            if(input[i].startsWith(prefix) && input[i].endsWith(suffix)) return i;
        }
        return -1;
    }
}




No comments:

Post a Comment

Labels

GeeksforGeeks (1109) LeetCode (1095) Review (846) Algorithm (795) to-do (634) LeetCode - Review (574) Classic Algorithm (324) Dynamic Programming (294) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Bit Algorithms (120) Different Solutions (120) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (108) HackerRank (89) Binary Search (83) Binary Tree (82) Graph Algorithm (76) Greedy Algorithm (73) DFS (71) Stack (65) LeetCode - Extended (62) Interview Corner (61) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (49) Trie (49) Binary Search Tree (47) USACO (46) Interval (45) LeetCode Hard (42) Mathematical Algorithm (42) ACM-ICPC (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Matrix (39) Recursive Algorithm (39) String Algorithm (38) Union-Find (37) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Array (33) Data Structure Design (33) Segment Tree (33) Sliding Window (33) prismoskills (33) HDU (31) Priority Queue (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Graph (27) Random (27) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Post-Order Traverse (25) Pre-Sort (25) Time Complexity (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Binary Indexed Trees (22) Bisection Method (22) Hash (22) DFS + Review (21) Lintcode - Review (21) Two Pointers (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) LeetCode - DP (20) Merge Sort (20) O(N) (20) Follow Up (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) KMP (14) LeetCode - DFS (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) Long Increasing Sequence(LIS) (13) Majority (13) Reverse Thinking (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) Miscs (11) Princeton (11) Proof (11) Rolling Hash (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) SPOJ (10) Theory (10) TreeMap (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) Interval Tree (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) TreeSet (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LeetCode - TODO (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Parser (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Skyline (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Hard Algorithm (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Clean Code (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concise (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Construction (1) LeetCode - Detail (1) LeetCode - Related (1) LeetCode - Thinking (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) Two-End-BFS (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts