Wednesday, May 2, 2018

LeetCode 721 - Accounts Merge


https://leetcode.com/problems/accounts-merge/description/
Given a list accounts, each element accounts[i] is a list of strings, where the first element accounts[i][0] is a name, and the rest of the elements are emails representing emails of the account.
Now, we would like to merge these accounts. Two accounts definitely belong to the same person if there is some email that is common to both accounts. Note that even if two accounts have the same name, they may belong to different people as people could have the same name. A person can have any number of accounts initially, but all of their accounts definitely have the same name.
After merging the accounts, return the accounts in the following format: the first element of each account is the name, and the rest of the elements are emails in sorted order. The accounts themselves can be returned in any order.
Example 1:
Input: 
accounts = [["John", "johnsmith@mail.com", "john00@mail.com"], ["John", "johnnybravo@mail.com"], ["John", "johnsmith@mail.com", "john_newyork@mail.com"], ["Mary", "mary@mail.com"]]
Output: [["John", 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com'],  ["John", "johnnybravo@mail.com"], ["Mary", "mary@mail.com"]]
Explanation: 
The first and third John's are the same person as they have the common email "johnsmith@mail.com".
The second John and Mary are different people as none of their email addresses are used by other accounts.
We could return these lists in any order, for example the answer [['Mary', 'mary@mail.com'], ['John', 'johnnybravo@mail.com'], 
['John', 'john00@mail.com', 'john_newyork@mail.com', 'johnsmith@mail.com']] would still be accepted.
Note:
  • The length of accounts will be in the range [1, 1000].
  • The length of accounts[i] will be in the range [1, 10].
  • The length of accounts[i][j] will be in the range [1, 30].
  • Union-Find
    https://leetcode.com/problems/accounts-merge/solution/
    As in Approach #1, our problem comes down to finding the connected components of a graph. This is a natural fit for a Disjoint Set Union (DSU) structure.
    Algorithm
    As in Approach #1, draw edges between emails if they occur in the same account. For easier interoperability between our DSU template, we will map each email to some integer index by using emailToID. Then, dsu.find(email) will tell us a unique id representing what component that email is in.
    For more information on DSU, please look at Approach #2 in the article here. For brevity, the solutions showcased below do not use union-by-rank.
    • Time Complexity: O(A \log A), where A = \sum a_i, and a_i is the length of accounts[i]. If we used union-by-rank, this complexity improves to O(A \alpha(A)) \approx O(A), where \alpha is the Inverse-Ackermannfunction.
    • Space Complexity: O(A), the space used by our DSU structure.
        public List<List<String>> accountsMerge(List<List<String>> accounts) {
            DSU dsu = new DSU();
            Map<String, String> emailToName = new HashMap();
            Map<String, Integer> emailToID = new HashMap();
            int id = 0;
            for (List<String> account: accounts) {
                String name = "";
                for (String email: account) {
                    if (name == "") {
                        name = email;
                        continue;
                    }
                    emailToName.put(email, name);
                    if (!emailToID.containsKey(email)) {
                        emailToID.put(email, id++);
                    }
                    dsu.union(emailToID.get(account.get(1)), emailToID.get(email));
                }
            }
    
            Map<Integer, List<String>> ans = new HashMap();
            for (String email: emailToName.keySet()) {
                int index = dsu.find(emailToID.get(email));
                ans.computeIfAbsent(index, x-> new ArrayList()).add(email);
            }
            for (List<String> component: ans.values()) {
                Collections.sort(component);
                component.add(0, emailToName.get(component.get(0)));
            }
            return new ArrayList(ans.values());
        }
    }
    class DSU {
        int[] parent;
        public DSU() {
            parent = new int[10001];
            for (int i = 0; i <= 10000; ++i)
                parent[i] = i;
        }
        public int find(int x) {
            if (parent[x] != x) parent[x] = find(parent[x]);
            return parent[x];
        }
        public void union(int x, int y) {
            parent[find(x)] = find(y);
        }
    1. The key task here is to connect those emails, and this is a perfect use case for union find.
    2. to group these emails, each group need to have a representative, or parent.
    3. At the beginning, set each email as its own representative.
    4. Emails in each account naturally belong to a same group, and should be joined by assigning to the same parent (let's use the parent of first email in that list)
        public List<List<String>> accountsMerge(List<List<String>> acts) {
            Map<String, String> owner = new HashMap<>();
            Map<String, String> parents = new HashMap<>();
            Map<String, TreeSet<String>> unions = new HashMap<>();
            for (List<String> a : acts) {
                for (int i = 1; i < a.size(); i++) {
                    parents.put(a.get(i), a.get(i));
                    owner.put(a.get(i), a.get(0));
                }
            }
            for (List<String> a : acts) {
                String p = find(a.get(1), parents);
                for (int i = 2; i < a.size(); i++)
                    parents.put(find(a.get(i), parents), p);
            }
            for(List<String> a : acts) {
                String p = find(a.get(1), parents);
                if (!unions.containsKey(p)) unions.put(p, new TreeSet<>());
                for (int i = 1; i < a.size(); i++)
                    unions.get(p).add(a.get(i));
            }
            List<List<String>> res = new ArrayList<>();
            for (String p : unions.keySet()) {
                List<String> emails = new ArrayList(unions.get(p));
                emails.add(0, owner.get(p));
                res.add(emails);
            }
            return res;
        }
        private String find(String s, Map<String, String> p) {
            return p.get(s) == s ? s : find(p.get(s), p);
        }


    public List<List<String>> accountsMerge(List<List<String>> accounts) {
    UnionFind uf = new UnionFind(accounts);
    for (int i = 1; i < accounts.size(); i++) {
    int tmp = i;
    Set<Integer> groups = uf.getGroup(getEmails(accounts.get(i))).stream().filter(x -> x < tmp)
    .collect(Collectors.toSet());
    uf.union(groups, i);
    }

    Map<Integer, PersonEmail> results = new HashMap<>();

    System.out.println(uf);
    for (int i = 0; i < accounts.size(); i++) {
    results.computeIfAbsent(uf.findRoot(i), tmp -> new PersonEmail()).setName(getName(accounts.get(i)))
    .addEmails(getEmails(accounts.get(i)));
    }

    return results.values().stream().map(pe -> {
    List<String> list = new ArrayList<>();
    list.add(pe.name);
    list.addAll(new TreeSet<>(pe.emails));
    return list;
    }).collect(Collectors.toList());
    }

    private static class PersonEmail {
    public String name;
    public Set<String> emails = new HashSet<>();

    public PersonEmail() {
    }

    public PersonEmail addEmails(Collection<String> emails) {
    this.emails.addAll(emails);
    return this;
    }

    public PersonEmail setName(String name) {
    this.name = name;
    return this;
    }
    }

    private String getName(List<String> account) {
    return account == null ? null : account.get(0);
    }

    private List<String> getEmails(List<String> account) {
    return account == null ? new ArrayList<>() : account.subList(1, account.size());
    }

    private static class UnionFind {
    int[] parent;
    // TODO make it generic
    Map<String, Set<Integer>> emailGroups = new HashMap<>();

    int size;

    public UnionFind(List<List<String>> accounts) {
    parent = new int[accounts.size()];
    size = accounts.size();
    // Arrays.fill(parent, -1);
    for (int i = 0; i < accounts.size(); i++) {
    parent[i] = i;
    for (String email : accounts.get(i)) {
    emailGroups.computeIfAbsent(email, k -> new HashSet<>()).add(i);
    }
    }
    }

    public int findRoot(int node) {
    if (isRoot(node)) {
    return node;
    }

    int root = findRoot(parent[node]);
    parent[node] = root;
    return root;
    }

    public void union(Set<Integer> roots, int newRoot) {
    // roots = findNotMergedRoot(roots);
    for (int root : roots) {
    // parent[root] = newRoot; // WRONG
    parent[findRoot(parent[root])] = newRoot;
    // size--;
    }
    }

    public Set<Integer> getGroup(List<String> emails) {
    Set<Integer> groups = new HashSet<>();
    for (String email : emails) {
    if (emailGroups.containsKey(email)) {
    // emailGroups.put(email, findRootNodes(emailGroups.get(email)));
    groups.addAll(emailGroups.get(email));
    }
    }
    return groups;
    }

    private Set<Integer> findRootNodes(Set<Integer> roots) {
    return roots.stream().filter(i -> isRoot(i)).collect(Collectors.toSet());
    }

    private boolean isRoot(Integer i) {
    return parent[i] == i;
    }

    @Override
    public String toString() {
    return "UnionFind [parent=" + Arrays.toString(parent) + ", emailGroups=" + emailGroups + ", size=" + size
    + "]";
    }
    }

    Draw an edge between two emails if they occur in the same account. The problem comes down to finding connected components of this graph.
    Algorithm
    For each account, draw the edge from the first email to all other emails. Additionally, we'll remember a map from emails to names on the side. After finding each connected component using a depth-first search, we'll add that to our answer.
    • Time Complexity: O(\sum a_i \log a_i), where a_i is the length of accounts[i]. Without the log factor, this is the complexity to build the graph and search for each component. The log factor is for sorting each component at the end.
    • Space Complexity: O(\sum a_i), the space used by our graph and our search.
        public List<List<String>> accountsMerge(List<List<String>> accounts) {
            Map<String, String> emailToName = new HashMap();
            Map<String, ArrayList<String>> graph = new HashMap();
            for (List<String> account: accounts) {
                String name = "";
                for (String email: account) {
                    if (name == "") {
                        name = email;
                        continue;
                    }
                    graph.computeIfAbsent(email, x-> new ArrayList<String>()).add(account.get(1));
                    graph.computeIfAbsent(account.get(1), x-> new ArrayList<String>()).add(email);
                    emailToName.put(email, name);
                }
            }
    
            Set<String> seen = new HashSet();
            List<List<String>> ans = new ArrayList();
            for (String email: graph.keySet()) {
                if (!seen.contains(email)) {
                    seen.add(email);
                    Stack<String> stack = new Stack();
                    stack.push(email);
                    List<String> component = new ArrayList();
                    while (!stack.empty()) {
                        String node = stack.pop();
                        component.add(node);
                        for (String nei: graph.get(node)) {
                            if (!seen.contains(nei)) {
                                seen.add(nei);
                                stack.push(nei);
                            }
                        }
                    }
                    Collections.sort(component);
                    component.add(0, emailToName.get(email));
                    ans.add(component);
                }
            }
            return ans;
        }





    No comments:

    Post a Comment

    Labels

    GeeksforGeeks (1109) LeetCode (1095) Review (846) Algorithm (795) to-do (634) LeetCode - Review (574) Classic Algorithm (324) Dynamic Programming (294) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Bit Algorithms (120) Different Solutions (120) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (108) HackerRank (89) Binary Search (83) Binary Tree (82) Graph Algorithm (76) Greedy Algorithm (73) DFS (71) Stack (65) LeetCode - Extended (62) Interview Corner (61) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (49) Trie (49) Binary Search Tree (47) USACO (46) Interval (45) LeetCode Hard (42) Mathematical Algorithm (42) ACM-ICPC (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Matrix (39) Recursive Algorithm (39) String Algorithm (38) Union-Find (37) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Array (33) Data Structure Design (33) Segment Tree (33) Sliding Window (33) prismoskills (33) HDU (31) Priority Queue (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Graph (27) Random (27) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Post-Order Traverse (25) Pre-Sort (25) Time Complexity (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Binary Indexed Trees (22) Bisection Method (22) Hash (22) DFS + Review (21) Lintcode - Review (21) Two Pointers (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) LeetCode - DP (20) Merge Sort (20) O(N) (20) Follow Up (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) KMP (14) LeetCode - DFS (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) Long Increasing Sequence(LIS) (13) Majority (13) Reverse Thinking (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) Miscs (11) Princeton (11) Proof (11) Rolling Hash (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) SPOJ (10) Theory (10) TreeMap (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) Interval Tree (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) TreeSet (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LeetCode - TODO (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Parser (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Skyline (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Hard Algorithm (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Clean Code (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concise (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Construction (1) LeetCode - Detail (1) LeetCode - Related (1) LeetCode - Thinking (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) Two-End-BFS (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

    Popular Posts