Saturday, July 30, 2016

HackerRank color grid


https://github.com/shawnfan/LintCode/blob/master/Java/ColorGrid.java
https://www.hackerrank.com/contests/ioi-2014-practice-contest-1/challenges/color-grid-ioi14
You are given an N×NN×N grid. Each cell has the color white (color 0) in the beginning.
Each row and column has a certain color associated with it. Filling a row or column with a new color VV means changing all the cells of that row or column to VV (thus overriding the previous colors of the cells).
Now, given a sequence of PP such operations, calculate the sum of the colors in the final grid.
For simplicity, the colors will be positive integers whose values will be most 109109.
Input Format
The first line of input contains two integers NN and PP separated by a space.
The next PP lines each contain a filling operation. There are two types of filling operations.
ROW I V which means "fill row II with color VV".
COL I V which means "fill column II with color VV".
Output Format
Output one line containing exactly one integer which is the sum of the colors in the final grid.
Constraints
1≤N≤60001≤N≤6000
1≤P≤4000001≤P≤400000
1≤I≤N1≤I≤N
1≤V≤1091≤V≤109
Sample Input
5 4
COL 1 6
COL 4 11
ROW 3 9
COL 1 24
Sample Output
200
Explanation
There are four operations. After the second operation, the grid looks like
 6  0  0 11  0
 6  0  0 11  0
 6  0  0 11  0
 6  0  0 11  0
 6  0  0 11  0
After the third operation (ROW 3 9), the third row was colored with 9, overriding any previous color in the cells.
 6  0  0 11  0
 6  0  0 11  0
 9  9  9  9  9
 6  0  0 11  0
 6  0  0 11  0
After the fourth operation (COL 1 24), the grid becomes:
24  0  0 11  0
24  0  0 11  0
24  9  9  9  9
24  0  0 11  0
24  0  0 11  0
The sum of the colors in this grid is 200.

https://www.hackerrank.com/contests/ioi-2014-practice-contest-1/challenges/color-grid-ioi14/editorial
Note that simply simulating the  operations will take  time. This means that when  and , then this solution will take at least 2.4 billion operations. This is too slow to pass the time limit for this problem. 

Fast solution 1

Consider a particular row (or column). Suppose that there are two operations that write a color at that row (or column). Suppose that the first operation is done at time  and writes color , and the second operation is done at time  and operation  (where ).

Notice that the first operation is irrelevant, because you know that you will do another operation at that row (or column) at a later time, i.e. whatever you write at  will surely be overwritten at time . Therefore, simulating the first operation is not necessary.

What does this mean? This means that for every row/column, you should only simulate the latest operations that write to that row/column. This is done by first taking all operations, and taking note of the latest time of an operation per row and column, and finally simulating only the operations that are the last in their corresponding row/column.

Since there are  rows and  columns, there are at most  rows to simulate. Since each simulated operation costs  time, this algorithm takes  time (the  appears because we still have to read the operations). If  is less than 40 million, so this passes the time limit well :) 

Fast solution 2

There's an alternative  time solution. This involves reversing the order of operations, but instead of overriding the cells, we never write on the cells that have been written on already. Additionally, we also keep track whether a row/column has already been operated on already, because it is not really useful to simulate an operation on such a row/column. Thus, after simulating an operation, we mark that row or column as used ordeleted.

Since each row or column will be operated on at most once, this algorithm also takes  time.

Even faster solution!

The solutions above will pass the time limit well. However, a simple modification of the second fast solution results in an even faster solution that will enable us to calculate the answer even if  had a much higher bound :)

The idea is this: at any point during simulating the operations in reverse, you know exactly how many cells in each row and column are alive. This is because after every row operation, the number of 'alive' rows is reduced by 1, and the same is true after a column operation.

Therefore, for a particular painting with color , we know exactly how many times the color  will be painted on the grid! This saves us from actually simulating the painting at all. There's no need to create a grid, just keep track of the number of alive rows and columns after every operation!

Since there is no more simulation, this algorithm now runs in  time! This means that the algorithm will still pass the time limit even though the upper bound for  were, say, 
int alive_row[411111];
int alive_col[411111];
int ts[411111];
int is[411111];
int vs[411111];
char cmd[111];
int main() {
    // take the input
    int n, p, i, v;
    scanf("%d%d", &n, &p);
    for (int i = 1; i <= n; i++) {
        alive_row[i] = alive_col[i] = 1;
    }
    for (int k = 0; k < p; k++) {
        scanf("%s%d%d", cmd, &i, &v);
        ts[k] = *cmd == 'R';
        is[k] = i;
        vs[k] = v;
    }

    // here, 'rows' is the number of undeleted rows left
    //       'cols' is the number of undeleted columns left
    //       'sum' is the current sum
    ll rows = n, cols = n, sum = 0;
    for (int k = p - 1; k >= 0; k--) {
        int i = is[k], v = vs[k];
        if (ts[k]) { // this is a row update
            if (alive_row[i]) {
                alive_row[i] = 0;
                sum += cols * v;
                rows--;
            } 
        } else { // this is a column update
            if (alive_col[i]) {
                alive_col[i] = 0;
                sum += rows * v;
                cols--;
            }
        }
    }

    // print the sum
    printf("%lld\n", sum);
}

Even, even faster solution!

Finally, this algorithm can be done in  time, by using a data structure called a set. Keep track of two sets called deleted_rows and deleted_cols, and any time a row or column is operated on, insert it into the corresponding set.

If the implementation of the set data structure uses hashing, then inserting in a set and checking if a value is in a set should run in  time! For more information on hash-based sets, and sets in general, see Set (abstract data type).

Note that the complexity  is independent of . This means that our algorithm will still work even if 's bound was even higher, say, , where we won't even have enough memory to allocate  bytes! 
unordered_set<int> deleted_rows;
unordered_set<int> deleted_cols;
int ts[411111];
int is[411111];
int vs[411111];
char cmd[111];
int main() {
    // take the input
    ll n;
    int p, i, v;
    scanf("%lld%d", &n, &p);
    for (int k = 0; k < p; k++) {
        scanf("%s%d%d", cmd, &i, &v);
        ts[k] = *cmd == 'R';
        is[k] = i;
        vs[k] = v;
    }

    // here, 'rows' is the number of undeleted rows left
    //       'cols' is the number of undeleted columns left
    //       'sum' is the current sum
    ll rows = n, cols = n, sum = 0;
    for (int k = p - 1; k >= 0; k--) {
        int i = is[k], v = vs[k];
        if (ts[k]) { // this is a row update
            if (deleted_rows.find(i) == deleted_rows.end()) {
                deleted_rows.insert(i);
                sum += cols * v;
                rows--;
            }
        } else { // this is a column update
            if (deleted_cols.find(i) == deleted_cols.end()) {
                deleted_cols.insert(i);
                sum += rows * v;
                cols--;
            }
        }
    }

    // print the sum
    printf("%lld\n", sum);
}
用HashMap, 理解题目规律,因为重复的计算可以被覆盖,所以是个优化题。

消灭重合点:      
如果process当下col, 其实要减去过去所有加过的row的交接点。。。    
再分析,就是每次碰到row 取一个单点, sumRow += xxx。      
然后process当下col时候, sum += colValue * N - sumRow. 就等于把交叉所有row(曾经Process过的row)的点减去了。很方便。

最后read in 是O(P),  process也是O(P).

class Cell {
    int x;
    boolean isRow;
    long value;
    public Cell(String s) {
        String[] ss = s.split(" ");
        this.isRow = ss[0].charAt(0) == 'R';
        this.x = Integer.parseInt(ss[1]);
        this.value = Long.parseLong(ss[2]);
    }
}
public static void main(String[] args) {
    Solution sol = new Solution();
   
    Scanner in = new Scanner(System.in);
    String[] ss = in.nextLine().split(" ");
    int N = Integer.parseInt(ss[0]);
    int P = Integer.parseInt(ss[1]);
   
    //Storage
    HashMap<String, Cell> map = new HashMap<String, Cell>();
    ArrayList<Cell> list = new ArrayList<Cell>();
   
    while (P != 0) {//O(P)
        //create Cell
        String s = in.nextLine();
        Cell cell = sol.new Cell(s);
        //add into list
        list.add(cell);
        //Check if cell exist in map.
        //if exist in map, replace it with current cell, and remove old cell from list
        String key = s.substring(0, s.lastIndexOf(" "));
        if (!map.containsKey(key)) {
            map.put(key, cell);
        } else {
            Cell oldCell = map.get(key);
            map.put(key, cell);
            list.remove(oldCell);
        }
        P--;
    }
   
    //Process final results
    int sumCol = 0;
    int sumRow = 0;
    long sum = 0;
    for (int i = 0; i < list.size(); i++) {//O(P)
        Cell cell = list.get(i);
        sum += cell.value * N;
        if (cell.isRow) {
            sum -= sumCol;
            sumRow += cell.value;
        } else {
            sum -= sumRow;
            sumCol += cell.value;
        }
    }
   
    System.out.println(sum);
}



No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (985) Algorithm (795) Review (759) to-do (631) LeetCode - Review (506) Classic Algorithm (324) Dynamic Programming (292) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Search (81) Binary Tree (80) Graph Algorithm (74) Greedy Algorithm (72) DFS (66) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) Codility (54) BFS (53) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) Recursive Algorithm (39) LeetCode Hard (38) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) TopCoder (23) Algorithm Game (22) Hash (22) Post-Order Traverse (22) Binary Indexed Trees (21) Bisection Method (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) Follow Up (19) O(N) (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Find Rule (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Tree Without Tree Predefined (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts