Multi Search - Cracking Coding Interview


Given a string s and an array of smaller strings T, design a method to search s for each small string in T.
给一个字符串S和一个字符串数组T(T中的字符串要比S短许多),设计一个算法, 在字符串S中查找T中的字符串。
后缀Trie的查找效率很优秀,如果你要查找一个长度为n的字符串,只需要O(n)的时间, 比较次数就是字符串的长度,相当给力。 但是,构造字符串S的后缀Trie却需要O(m^2 )的时间, (m为S的长度),及O(m^2 )的空间。
http://blog.csdn.net/navyifanr/article/details/24455275
http://skyzdalimit-techbuzz.blogspot.com/2011/12/given-string-s-and-array-of-smaller.html
  1.     public static void main(String[] args) {  
  2.         String testString = "mississippi";  
  3.         String[] stringList = {"is""sip""hi""sis"};  
  4.         SuffixTree tree = new SuffixTree(testString);  
  5.         for (String s : stringList) {  
  6.             ArrayList<Integer> list = tree.getIndexes(s);  
  7.             if (list != null) {  
  8.                 System.out.println(s + ":" + list.toString());  
  9.             }  
  10.         }  
  11.     }  
  12. }  
  13.   
  14. class SuffixTree {  
  15.     SuffixTreeNode root = new SuffixTreeNode();  
  16.     public SuffixTree(String s) {  
  17.         for (int i = 0; i < s.length(); i++) {  
  18.             String suffix = s.substring(i);  
  19.             root.insertString(suffix, i);  
  20.         }  
  21.     }  
  22.   
  23.     public ArrayList<Integer> getIndexes(String s) {  
  24.         return root.getIndexes(s);  
  25.     }  
  26. }  
  27.   
  28. class SuffixTreeNode {  
  29.     HashMap<Character, SuffixTreeNode> children = new  
  30.     HashMap<Character, SuffixTreeNode>();  
  31.     char value;  
  32.     ArrayList<Integer> indexes = new ArrayList<Integer>();  
  33.     public SuffixTreeNode() { }  
  34.   
  35.     public void insertString(String s, int index) {  
  36.         indexes.add(index);  
  37.         if (s != null && s.length() > 0) {  
  38.             value = s.charAt(0);  
  39.             SuffixTreeNode child = null;  
  40.             if (children.containsKey(value)) {  
  41.                 child = children.get(value);  
  42.             } else {  
  43.                 child = new SuffixTreeNode();  
  44.                 children.put(value, child);  
  45.             }  
  46.             String remainder = s.substring(1);  
  47.             child.insertString(remainder, index);  
  48.         }  
  49.     }  
  50.   
  51.     public ArrayList<Integer> getIndexes(String s) {  
  52.         if (s == null || s.length() == 0) {  
  53.             return indexes;  
  54.         } else {  
  55.             char first = s.charAt(0);  
  56.             if (children.containsKey(first)) {  
  57.                 String remainder = s.substring(1);  
  58.                 return children.get(first).getIndexes(remainder);  
  59.             }  
  60.         }  
  61.         return null;  
  62.     }  


Alternatively, we can add all the smaller strings into a trie
public static Trie createTreeFromStrings(String[] smalls, int maxSize) {
Trie tree = new Trie();
for (String s : smalls) {
if (s.length() <= maxSize) {
tree.insertString(s, 0);
}
}
return tree;
}

public static ArrayList<String> findStringsAtLoc(TrieNode root, String big, int start) {
ArrayList<String> strings = new ArrayList<String>();
int index = start;
while (index < big.length()) {
root = root.getChild(big.charAt(index));
if (root == null) break;
if (root.terminates()) {
strings.add(big.substring(start, index + 1));
}
index++;
}
return strings;
}

public static void insertIntoHashMap(ArrayList<String> strings, HashMapList<String, Integer> map, int index) {
for (String s : strings) {
map.put(s, index);
}
}

public static HashMapList<String, Integer> searchAll(String big, String[] smalls) {
HashMapList<String, Integer> lookup = new HashMapList<String, Integer>();
TrieNode root = createTreeFromStrings(smalls, big.length()).getRoot();
for (int i = 0; i < big.length(); i++) {
ArrayList<String> strings = findStringsAtLoc(root, big, i);
insertIntoHashMap(strings, lookup, i);
}
return lookup;
}

public static void subtractValue(ArrayList<Integer> locations, int delta) {
if (locations == null) return;
for (int i = 0; i < locations.size(); i++) {
locations.set(i, locations.get(i) - delta);
}
}

public static Trie createTrieFromString(String s) {
Trie trie = new Trie();
for (int i = 0; i < s.length(); i++) {
String suffix = s.substring(i);
trie.insertString(suffix, i);
}
return trie;
}

public static HashMapList<String, Integer> searchAll(String big, String[] smalls) {
HashMapList<String, Integer> lookup = new HashMapList<String, Integer>();
Trie tree = createTrieFromString(big);
for (String s : smalls) {
/* Get terminating location of each occurrence.*/
ArrayList<Integer> locations = tree.search(s);
/* Adjust to starting location. */
subtractValue(locations, s.length());
/* Insert. */
lookup.put(s, locations);
}
return lookup;
}
public class Trie {
private TrieNode root = new TrieNode();
public ArrayList<Integer> search(String s) {
return root.search(s);
}
public void insertString(String str, int location) {
root.insertString(str, location);
}
public TrieNode getRoot() {
return root;
}

public class TrieNode {
private HashMap<Character, TrieNode> children;
private ArrayList<Integer> indexes;
public TrieNode() { 
children = new HashMap<Character, TrieNode>();
indexes = new ArrayList<Integer>();
}
public void insertString(String s, int index) {
if (s == null) return;
indexes.add(index);
if (s.length() > 0) {
char value = s.charAt(0);
TrieNode child = null;
if (children.containsKey(value)) {
child = children.get(value);
} else {
child = new TrieNode();
children.put(value, child);
}
String remainder = s.substring(1);
child.insertString(remainder, index + 1);
} else {
children.put('\0', null);
}
}
public ArrayList<Integer> search(String s) {
if (s == null || s.length() == 0) {
return indexes;
} else {
char first = s.charAt(0);
if (children.containsKey(first)) {
String remainder = s.substring(1);
return children.get(first).search(remainder);
}
}
return null;
}
public boolean terminates() {
return children.containsKey('\0');
}
public TrieNode getChild(char c) {
return children.get(c);
}
}


public static boolean isSubstringAtLocation(String big, String small, int offset) {
  for (int i = 0; i < small.length(); i++) {
    if (big.charAt(offset + i) != small.charAt(i)) {
      return false;
    }
  }
  return true;
}

public static ArrayList<Integer> search(String big, String small) {
  ArrayList<Integer> locations = new ArrayList<Integer>();
  for (int i = 0; i < big.length() - small.length() + 1; i++) {
    if (isSubstringAtLocation(big, small, i)) {
      locations.add(i);
    }
  }
  return locations;
}

public static HashMapList<String, Integer> searchAll(String big, String[] smalls) {
  HashMapList<String, Integer> lookup = new HashMapList<String, Integer>();
  for (String small : smalls) {
    ArrayList<Integer> locations = search(big, small);
    lookup.put(small, locations);
  }
  return lookup;
}
AC自动机算法是解决字符串多模式匹配的一个经典方法,时间复杂度为:O(m+kn+z), 其中:m是目标串S的长度,k是模式串个数,n是模式串平均长度,z是S 中出现的模式串数量。从时间复杂度上可以看出,AC自动机比后缀Trie方法要快, m从2次方降到了1次方。
AC自动机也会先构造一棵Trie树,不同的是,它用模式串来构造Trie树。 然后遍历一次目标串S,即可求出哪些模式串出现在目标串S中。
关于AC自动机,比较好的资料是: Set Matching and Aho-Corasick Algorithm 它是 生物序列算法课的一个课件, 这个课的课件基本上都是关于字符串算法的,讲得挺好,推荐一读。
https://www.ideserve.co.in/learn/pattern-matching-using-trie

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts