LeetCode 372 - Super Pow


http://bookshadow.com/weblog/2016/07/07/leetcode-super-pow/
Your task is to calculate ab mod 1337 where a is a positive integer and b is an extremely large positive integer given in the form of an array.
Example1:
a = 2
b = [3]

Result: 8
Example2:
a = 2
b = [1,0]

Result: 1024

题目描述:

计算a ^ b mod 1337的值。a是正整数,b是一个极大的正整数,以数组形式给出。
https://all4win78.wordpress.com/2016/07/07/leetcode-372-super-pow/

从最低位到最高位,用一个临时变量记录当前位的base,比如最后一位的base是a,倒数第二位的是a^10,当然,直接用a来记录也可以。
    public int superPow(int a, int[] b) {
        int magicNum = 1337;
        a = a % magicNum;
        int prod = 1;
        for (int i = b.length - 1; i >= 0; i--) {
            int temp = 1;
            for (int j = 0; j <= 9; j++) {
                if (b[i] == j) {
                    prod = (prod * temp) % magicNum;
                }
                temp = (temp * a) % magicNum;
            }
            a = temp;
        }
        return prod;
    }

http://www.voidcn.com/blog/niuooniuoo/article/p-6093171.html
算法需要利用恒等式  (a*b)%c = (a%c)*(b%c)。以下为恒等式的证明。
设a/c=m,则mc+a%c =a;
设b/c=n,则nc+b%c =b;
    (a*b)%c 
= { (mc+a%c)*(nc+b%c ) }%c 
= { mcnc + (nc)*(a%c) + (mc)*(b%c) + (a%c)*(b%c) } % c   其中 mcnc + (nc)*(a%c) + (mc)*(b%c)可以整除c
= {(a%c)*(b%c)}%c。
 public int superPow(int a, int[] b) {
  int res = 1;
  for (int i = 0; i < b.length; i++) {
   res = pow(res, 10) * pow(a, b[i]) % 1337;
  }
  return res;
 }

 public int pow(int a, int b) {
  if (b == 0) return 1;
  if (b == 1) return a % 1337;
  return pow(a % 1337, b / 2) * pow(a % 1337, b - b / 2) % 1337;
 }
https://discuss.leetcode.com/topic/51328/7ms-java-solution-using-fast-power-algorithm
private static final int NUM = 1337;
public int superPow(int a, int[] b) {
    int ans = 1;
    //not expecting to be a part of input
    if(b==null||b.length==0)
        return 0;
    a = a%NUM;
    int len = b.length;
    for (int i = 0; i < len; i++) {
        ans = ((pow(ans,10)*pow(a,b[i]))%NUM);
    }
    return ans;
}

private int pow(int a, int b){
    if(b==1)
        return a;
    if(b==0)
        return 1;
    int x = pow(a,b/2)%NUM;
    x = (x*x)%NUM;
    if((b&1)==1)
        x = (x*a)%NUM;
    return x;
}
http://xiadong.info/2016/07/leetcode-372-super-pow/
a ^ (n + m) = (a ^ n) * (a ^ m)
用b{i}表示数组b中到下标i为止的数, a ^ b{i} = ((a ^ b{i - 1}) ^ 10) * (a ^ b[i]), 把幂运算替换为乘法运算和循环, 在每一个循环体中都对结果取余. 就可以得到结果. 其中b[i]为0和第一次循环要特别处理
http://www.cnblogs.com/grandyang/p/5651982.html

1. a^b % 1337 = (a%1337)^b % 1337
2. xy % 1337 = ((x%1337) * (y%1337)) % 1337, 其中xy是一个数字如:45, 98等等
其中第一个公式可以用来削减a的值, 第二个公式可以将数组一位位的计算, 比如 12345^678, 首先12345可以先除余1337, 设结果为X, 则原式就可以化为: 
X^678 = ((X^670 % 1337) * (X^8 % 1337)) % 1337 = (pow((X^670 % 1337), 10) * (X^8 % 1337)) % 1337
在上面我用了一个pow来化简表示 X^670 = pow(X^670, 10), 当然不是库函数里面pow, 因为会超出界限, 因此我们需要自己在写一个pow来一个个的边乘边除余.

https://www.hrwhisper.me/leetcode-super-pow/
一个数e可以写成如下形式:
e=\sum _{i=0}^{n-1}a_{i}2^{i}
显然,对于b的e次方,有:
b^{e}=b^{\left(\sum _{i=0}^{n-1}a_{i}2^{i}\right)}=\prod _{i=0}^{n-1}\left(b^{2^{i}}\right)^{a_{i}}
c\equiv \prod _{i=0}^{n-1}\left(b^{2^{i}}\right)^{a_{i}}\ ({\mbox{mod}}\ m)
此外,还有:
c mod m = (a ⋅ b) mod m  = [(a mod m) ⋅ (b mod m)] mod m
参照wiki :https://en.wikipedia.org/wiki/Modular_exponentiation
看懂了上面的式子后,回到此题,此题b用数组表示,其实就是把上面的数e的2改为10即可。
    private int mod = 1337;
    public int superPow(int a, int[] b) {
        int n = b.length;
int ans = 1;
for (int i = n - 1; i >= 0; i--) {
ans = ans * quick_pow(a, b[i]) % mod;
a = quick_pow(a, 10);
}
return ans;
}
int quick_pow(int a, int b) {
int ans = 1;
a %= mod;
while (b > 0) {
if ((b & 1) !=0) ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
    }

def superPow(self, a, b): """ :type a: int :type b: List[int] :rtype: int """ ans, pow = 1, a for x in range(len(b) - 1, -1, -1): ans = (ans * (pow ** b[x]) % 1337) % 1337 pow = (pow ** 10) % 1337 return ans
https://discuss.leetcode.com/topic/50543/8ms-java-solution-using-fast-power
http://www.luozhipeng.com/?p=527
private static final int M = 1337;

    public int normalPow(int a, int b) {
        int result = 1;
        while (b != 0) {
            if (b % 2 != 0)
                result = result * a % M;
            a = a * a % M;
            b /= 2;
        }
        return result;
    }
    public int superPow(int a, int[] b) {
        a %= M;
        int result = 1;
        for (int i = b.length - 1; i >= 0; i--) {
            result = result * normalPow(a, b[i]) % M;
            a = normalPow(a, 10);
        }
        return result;
    }
X. Pigeonhole principle
https://discuss.leetcode.com/topic/51176/7ms-java-solution
if a^k % m = a^t % m, then a^(k+1) % m must be equal to a^(t+1).
Let's say a^14 %m = a^27 %m, then a^28 % m is equal to a^15%m,
a^k %m = a^(k-13)%m.
let's have an array to keep the power of 'a' and the index is mod value, example:
a=2, b=0, modToPower[1] = 0;
a=2, b =1, modToPower[2] = 1;
a=2, b =2, modToPower[4] = 2;
...
the length of modToPower is 1337(it can be extended to any other positive integer).
and once there is b=x, and modToPower[a^b%1337] is existing, then we can exit the loop.
regarding array 'b', like above if a^k % m = a^(k-13)%m, we can easily map the value represented by array 'b' to mod by 13.
like a^[1,2,3] = a^123 = a^110 =...= a^6;
public int superPow(int a, int[] b) {
    if (a <= 0 || b == null || b.length == 0) {
     return 0;
    }
 int modNum = 1337;
 a %= modNum;
 int[] log = new int[modNum];
 for (int i = 0; i < log.length; i++) {
  log[i] = -1;
 }
 int startNum = 1;
 Map<Integer, Integer> powerToModNum = new HashMap<Integer, Integer>();
 int powerMod;
 for (int startIndex = 0; ; startIndex++) {
  startNum %= modNum;
  if (log[startNum] == -1) {
   log[startNum] = startIndex;
   powerToModNum.put(startIndex, startNum);
   startNum = (startNum*a)%modNum;
   
  } else {
   powerMod = startIndex - log[startNum%modNum];
   break;
  }
 }
 
 int j = 0;
 for (int power : b) {
  j = (j*10 + power%powerMod)%powerMod;
 }
 return powerToModNum.get(j);
}
https://discuss.leetcode.com/topic/51460/java-solution-pigeonhole-principle
The idea is to find a cycle in the power. As the number is modded by 1337, there must be a duplication among the power of from 1 to 1337. This tells which position in cycle b corresponds to.

public
int superPow(int a, int[] b)
{ int []pows = new int[1337]; // max cycle is 1337 Set<Integer> set = new HashSet<Integer>(); // pigeon hole principle dictates that must be a duplicate among the power from 1 to 1337 if moded by 1337 int cycle = 0; int val = 1; for (int i = 0; i < 1337; i++) { val = (int)(((long)val * a) % 1337); // cycle found if (set.contains(val)) break; set.add(val); pows[cycle++] = val; } // b: String -> BigInteger StringBuilder str = new StringBuilder(); for(int v: b) str.append(v); BigInteger bVal = new BigInteger(str.toString()); bVal = bVal.subtract(new BigInteger("1")).mod(new BigInteger("" + cycle)); return pows[bVal.intValue()]; }


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts