Sparse Similarity


The similarity of two documents (each with distinct words) is defined to be the
size of the intersection divided by the size of the union. For example, if the documents consist of
integers, the similarity of {1, 5, 3} and { 1, 7, 2, 3} is 0. 4, because the intersection has size
2 and the union has size 5.
We have a long list of documents (with distinct values and each with an associated ID) where the
similarity is believed to be "sparse:'That is, any two arbitrarily selected documents are very likely to
have similarity O. Design an algorithm that returns a list of pairs of document IDs and the associated

similarity.

Print only the pairs with similarity greater than 0. Empty documents should not be printed at all. For
simplicity, you may assume each document is represented as an array of distinct integers.


public class Document {
private ArrayList<Integer> words;
private int docId;
}

https://github.com/careercup/CtCI-6th-Edition/blob/master/Java/Ch%2017.%20Hard/Q17_26_Sparse_Similarity/QuestionB.java
public static HashMap<DocPair, Double> computeSimilarities(HashMap<Integer, Document> documents) {
HashMapList<Integer, Integer> wordToDocs = groupWords(documents);
HashMap<DocPair, Double> similarities = computeIntersections(wordToDocs);
adjustToSimilarities(documents, similarities);
return similarities;
}

/* Create hash table from each word to where it appears. */
public static HashMapList<Integer, Integer> groupWords(HashMap<Integer, Document> documents) {
HashMapList<Integer, Integer> wordToDocs = new HashMapList<Integer, Integer>();

for (Document doc : documents.values()) {
ArrayList<Integer> words = doc.getWords();
for (int word : words) {
wordToDocs.put(word, doc.getId());
}
}

return wordToDocs;
}

/* Compute intersections of documents. Iterate through each list of
 * documents and then each pair within that list, incrementing the
 * intersection of each page. */
public static HashMap<DocPair, Double> computeIntersections(HashMapList<Integer, Integer> wordToDocs) {
HashMap<DocPair, Double> similarities = new HashMap<DocPair, Double>();
Set<Integer> words = wordToDocs.keySet();
for (int word : words) {
ArrayList<Integer> docs = wordToDocs.get(word);
Collections.sort(docs);
for (int i = 0; i < docs.size(); i++) {
for (int j = i + 1; j < docs.size(); j++) {
increment(similarities, docs.get(i), docs.get(j));
}
}
}

return similarities;
}

/* Increment the intersection size of each document pair. */
public static void increment(HashMap<DocPair, Double> similarities, int doc1, int doc2) {
DocPair pair = new DocPair(doc1, doc2);
if (!similarities.containsKey(pair)) {
similarities.put(pair, 1.0);
} else {
similarities.put(pair, similarities.get(pair) + 1);
}
}

/* Adjust the intersection value to become the similarity. */
public static void adjustToSimilarities(HashMap<Integer, Document> documents, HashMap<DocPair, Double> similarities) {
for (Entry<DocPair, Double> entry : similarities.entrySet()) {
DocPair pair = entry.getKey();
Double intersection = entry.getValue();
Document doc1 = documents.get(pair.doc1);
Document doc2 = documents.get(pair.doc2);
double union = (double) doc1.size() + doc2.size() - intersection;
entry.setValue(intersection / union);
}
}


public static HashMap<DocPair, Double> computeSimilarities(HashMap<Integer, Document> documents) {
ArrayList<Document> docs = new ArrayList<Document>();
for (Document doc : documents.values()) {
docs.add(doc);
}
return computeSimilarities(docs);
}

public static HashMap<DocPair, Double> computeSimilarities(ArrayList<Document> documents) {
HashMap<DocPair, Double> similarities = new HashMap<DocPair, Double>();
for (int i = 0; i < documents.size(); i++) {
for (int j = i + 1; j < documents.size(); j++) {
Document doc1 = documents.get(i);
Document doc2 = documents.get(j);
double sim = computeSimilarity(doc1, doc2);
if (sim > 0) {
DocPair pair = new DocPair(doc1.getId(), doc2.getId());
similarities.put(pair, sim);
}
}
}
return similarities;
}

public static double computeSimilarity(Document doc1, Document doc2) {
int intersection = 0;
HashSet<Integer> set1 = new HashSet<Integer>();
set1.addAll(doc1.getWords());

for (int word : doc2.getWords()) {
if (set1.contains(word)) {
intersection++;
}
}

double union = doc1.size() + doc2.size() - intersection;

return intersection / union;
}
https://github.com/careercup/CtCI-6th-Edition/blob/master/Java/Ch%2017.%20Hard/Q17_26_Sparse_Similarity/QuestionC.java
public static class Element implements Comparable<Element> {
public int word;
public int document;
public Element(int w, int d) {
word = w;
document = d;
}
public int compareTo(Element e) {
if (word == e.word) {
return document - e.document;
}
return word - e.word;
}
}

public static HashMap<DocPair, Double> computeSimilarities(HashMap<Integer, Document> documents) {
ArrayList<Element> elements = sortWords(documents);
HashMap<DocPair, Double> similarities = computeIntersections(elements);
adjustToSimilarities(documents, similarities);
return similarities;
}

/* Throw all words into one list, sorting by the word then the document. */
public static ArrayList<Element> sortWords(HashMap<Integer, Document> docs) {
ArrayList<Element> elements = new ArrayList<Element>();
for (Document doc : docs.values()) {
ArrayList<Integer> words = doc.getWords();
for (int word : words) {
elements.add(new Element(word, doc.getId()));
}
}
Collections.sort(elements);
return elements;
}

/* Increment the intersection size of each document pair. */
public static void increment(HashMap<DocPair, Double> similarities, int doc1, int doc2) {
DocPair pair = new DocPair(doc1, doc2);
if (!similarities.containsKey(pair)) {
similarities.put(pair, 1.0);
} else {
similarities.put(pair, similarities.get(pair) + 1);
}
}

/* Adjust the intersection value to become the similarity. */
public static HashMap<DocPair, Double> computeIntersections(ArrayList<Element> elements) {
HashMap<DocPair, Double> similarities = new HashMap<DocPair, Double>();
for (int i = 0; i < elements.size(); i++) {
Element left = elements.get(i);
for (int j = i + 1; j < elements.size(); j++) {
Element right = elements.get(j);
if (left.word != right.word) {
break;
}
increment(similarities, left.document, right.document);
}
}
return similarities;
}

/* Adjust the intersection value to become the similarity. */
public static void adjustToSimilarities(HashMap<Integer, Document> documents, HashMap<DocPair, Double> similarities) {
for (Entry<DocPair, Double> entry : similarities.entrySet()) {
DocPair pair = entry.getKey();
Double intersection = entry.getValue();
Document doc1 = documents.get(pair.doc1);
Document doc2 = documents.get(pair.doc2);
double union = (double) doc1.size() + doc2.size() - intersection;
entry.setValue(intersection / union);
}
}

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts