Set 15 (Longest Bitonic Subsequence) | GeeksforGeeks


Dynamic Programming | Set 15 (Longest Bitonic Subsequence) | GeeksforGeeks
Given an array arr[0 ... n-1] containing n positive integers, a subsequence of arr[] is called Bitonic if it is first increasing, then decreasing. Write a function that takes an array as argument and returns the length of the longest bitonic subsequence.

A sequence, sorted in increasing order is considered Bitonic with the decreasing part as empty. Similarly, decreasing order sequence is considered Bitonic with the increasing part as empty.

This problem is a variation of standard Longest Increasing Subsequence (LIS) problem. Let the input array be arr[] of length n. We need to construct two arrays lis[] and lds[] using Dynamic Programming solution of LIS problem. lis[i] stores the length of the Longest Increasing subsequence ending with arr[i]. lds[i] stores the length of the longest Decreasing subsequence starting from arr[i]. Finally, we need to return the max value of lis[i] + lds[i] – 1 where i is from 0 to n-1.
Time Complexity: O(n^2) Auxiliary Space: O(n)
/* lbs() returns the length of the Longest Bitonic Subsequence in
    arr[] of size n. The function mainly creates two temporary arrays
    lis[] and lds[] and returns the maximum lis[i] + lds[i] - 1.
    lis[i] ==> Longest Increasing subsequence ending with arr[i]
    lds[i] ==> Longest decreasing subsequence starting with arr[i]
*/
int lbs( int arr[], int n )
{
   int i, j;
   /* Allocate memory for LIS[] and initialize LIS values as 1 for
      all indexes */
   int *lis = new int[n];
   for ( i = 0; i < n; i++ )
      lis[i] = 1;
   /* Compute LIS values from left to right */
   for ( i = 1; i < n; i++ )
      for ( j = 0; j < i; j++ )
         if ( arr[i] > arr[j] && lis[i] < lis[j] + 1)
            lis[i] = lis[j] + 1;
   /* Allocate memory for lds and initialize LDS values for
      all indexes */
   int *lds = new int [n];
   for ( i = 0; i < n; i++ )
      lds[i] = 1;
   /* Compute LDS values from right to left */
   for ( i = n-2; i >= 0; i-- )
      for ( j = n-1; j > i; j-- )
         if ( arr[i] > arr[j] && lds[i] < lds[j] + 1)
            lds[i] = lds[j] + 1;
   /* Return the maximum value of lis[i] + lds[i] - 1*/
   int max = lis[0] + lds[0] - 1;
   for (i = 1; i < n; i++)
     if (lis[i] + lds[i] - 1 > max)
         max = lis[i] + lds[i] - 1;
   return max;
}

O(nlongn)
https://www.geeksforgeeks.org/longest-bitonic-subsequence-onlogn/
The idea is to follow Longest Increasing Subsequence Size (n log n) to see the way length of Longest Increasing subsequence (LIS) is calculated.
Algorithm:
Step 1: Define 4 Auxiliary arrays of size n:
        increasing[n] to calculate LIS of the 
        array  tail1[n] to store the values for 
        LIS for increasing[n]
        decreasing[n] to calculate LIS of the 
        array  tail2[n] to store the values for
        LIS for decreasing[n]
Step 2: Find LIS for increasing array
Step 3: Reverse array and store it in decreasing
Step 4: Find LIS for decreasing array
Step 5: Longest Bitonicc SubSequence length now 
        will be max of tail1[i] + tail2[i] + 1
http://ideone.com/LGx705
http://dotnetvisio.blogspot.com/2013/07/bitonic-subsequence-problem.html
    private static int Maximum(int []arr,int size)
    {
        int []bc=new int[size];        
        int i,j,max=1;        
        bc[0]=1;        
        for(i=1;i<size;i++)
        {
            bc[i]=1;
            for(j=i-1;j>=0;j--)
            {
                if((bc[i]<bc[j]+1) && arr[i]>arr[j])
                {
                    bc[i]=bc[j]+1;
                }
            }
            if(bc[i]>max)
            {
                max=bc[i];
            }
        }       
        bc[size-1]=1;
        
        for(i=size-2;i>=0;i--)
        {
            int prv=bc[i];
            bc[i]=1;
            for(j=i+1;j<size;j++)
            {
                if((bc[i]<bc[j]+1) && arr[i] > arr[j])
                {
                    bc[i]=bc[j]+1;
                }
            }            
            if(prv+bc[i]-1 > max)
            {
                max=prv+bc[i]-1;
            }
        }
        return max;
    }
http://www.zrzahid.com/longest-bitonic-sequence/
the longest bitonic subsequence with peak at a position i would consists of longest increasing subsequence that ends at i and a longest decreasing subsequence starting at i. We need to construct two arrays LIS[] and LDS[] such that for each position i –
 LIS[i] : length of the Longest Increasing subsequence ending at arr[i]. 
 LDS[i]:  length of the longest Decreasing subsequence starting from arr[i].         
        LIS[i]+LDS[i]-1 : the length Longest Bitonic Subsequence with peak at i.
the LIS problem has an optimal substructure LIS(i) = max{1+LIS(j)} for all j < i 
Longest Decreasing Subsequence (LDS) can be computed similar to LIS with the recurrence relation LDS(i) = max{1+LDS(j)} for all j < i and A[j] > A[i] 
public static int longestBiotonicSequence(int[] a){
 int[] lis = new int[a.length];
 int[] lds = new int[a.length];
 //base cases - single number is a lis and lds
 Arrays.fill(lis, 1);
 Arrays.fill(lds, 1);
 int maxBiotonicLen = Integer.MIN_VALUE;
 
 //longest increasing subsequence
 //lis(i) = max{1+lis(j)}, for all j < i and a[j] < a[i]
 for(int i = 1; i < a.length; i++){
  for(int j = 0; j < i; j++){
   if(a[i] > a[j] && lis[j] + 1 > lis[i]){
    lis[i] = lis[j]+1;
   }
  }
 }
 
 //longest decreasing subsequence
 //lds(i) = max{1+lds(j)}, for all j < i and a[j] > a[i]
 //longest biotonic seq lbs(i) = lis(i)+lds(i)-1
 maxBiotonicLen = lis[0]+lds[0]-1;
 for(int i = 1; i < a.length; i++){ // seems not right
  for(int j = 0; j < i; j++){
   if(a[i] < a[j] && lds[j] + 1 > lds[i]){
    lds[i] = lds[j]+1;
   }
  }
  maxBiotonicLen = Math.max(maxBiotonicLen, lis[i]+lds[i]-1);
 }
 
 return maxBiotonicLen;
}

http://www.geeksforgeeks.org/printing-longest-bitonic-subsequence/
Printing Longest Bitonic Subsequence
Read full article from Dynamic Programming | Set 15 (Longest Bitonic Subsequence) | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts