LeetCode 797 - All Paths From Source to Target


https://leetcode.com/problems/all-paths-from-source-to-target/description/
Given a directed, acyclic graph of N nodes.  Find all possible paths from node 0 to node N-1, and return them in any order.
The graph is given as follows:  the nodes are 0, 1, ..., graph.length - 1.  graph[i] is a list of all nodes j for which the edge (i, j) exists.
Example:
Input: [[1,2], [3], [3], []] 
Output: [[0,1,3],[0,2,3]] 
Explanation: The graph looks like this:
0--->1
|    |
v    v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.
Note:
  • The number of nodes in the graph will be in the range [2, 15].
  • You can print different paths in any order, but you should keep the order of nodes inside one path.
Since the graph is a directed, acyclic graph, any path from A to B is going to be composed of A plus a path from any neighbor of A to B. We can use a recursion to return the answer.
Algorithm
Let N be the number of nodes in the graph. If we are at node N-1, the answer is just the path {N-1}. Otherwise, if we are at node node, the answer is {node} + {path from nei to N-1} for each neighbor nei of node. This is a natural setting to use a recursion to form the answer.
  • Time Complexity: O(2^N N^2). We can have exponentially many paths, and for each such path, our prepending operation path.add(0, node) will be O(N^2).
  • Space Complexity: O(2^N N), the size of the output dominating the final space complexity.
    public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
        return solve(graph, 0);
    }

    public List<List<Integer>> solve(int[][] graph, int node) {
        int N = graph.length;
        List<List<Integer>> ans = new ArrayList();
        if (node == N - 1) {
            List<Integer> path = new ArrayList();
            path.add(N-1);
            ans.add(path);
            return ans;
        }

        for (int nei: graph[node]) {
            for (List<Integer> path: solve(graph, nei)) {
                path.add(0, node);
                ans.add(path);
            }
        }
        return ans;
    }
https://leetcode.com/problems/all-paths-from-source-to-target/discuss/233331/Java-Beats-100-or-DFS-or-Space-Efficient
    List<List<Integer>> paths;
    List<Integer> path;
    
    public void dfs(int[][] graph, int curr) {
        path.add(curr);
        if (curr == (graph.length-1)) {
            paths.add(new ArrayList<>(path));
        } else {
            for(int node:graph[curr])
                dfs(graph,node);
        }   
        path.remove(path.size()-1);
    }
    
    public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
        paths = new ArrayList();
        path = new ArrayList();
        dfs(graph,0);
        return paths;
    }
https://leetcode.com/problems/all-paths-from-source-to-target/discuss/118713/Java-DFS-Solution
It is a directed, acyclic graph of N nodes. So each node will only be visited once in the first approach. So the time complexity is O(|V|+|E|) -> O(n)
One dfs solution is to traverse the graph from start node to the end, and keep track of each node along the path. Each node can be visited many times when it has multiple indegree.
    public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
        List<List<Integer>> res = new ArrayList<>();
        List<Integer> path = new ArrayList<>();
     
        path.add(0);
        dfsSearch(graph, 0, res, path);
     
        return res;
    }

    private void dfsSearch(int[][] graph, int node, List<List<Integer>> res, List<Integer> path) {
        if (node == graph.length - 1) {
            res.add(new ArrayList<Integer>(path));
            return;
        }

        for (int nextNode : graph[node]) {
            path.add(nextNode);
            dfsSearch(graph, nextNode, res, path);
            path.remove(path.size() - 1);
        }
    }
Another dfs solution is to use memorization. Each node will be only visited once since the sub result from this node has already been recorded. Memorization increses space cost as well as time cost to record existing paths.
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
    Map<Integer, List<List<Integer>>> map = new HashMap<>();

    return dfsSearch(graph, 0, map);   
}

private List<List<Integer>> dfsSearch(int[][] graph, int node, Map<Integer, List<List<Integer>>> map) {
    if (map.containsKey(node)) {
        return map.get(node);
    }

    List<List<Integer>> res = new ArrayList<>();
    if (node == graph.length - 1) {
        List<Integer> path = new LinkedList<>();
        path.add(node);
        res.add(path);
    } else {
        for (int nextNode : graph[node]) {
            List<List<Integer>> subPaths = dfsSearch(graph, nextNode, map);
            for (List<Integer> path : subPaths) {
                LinkedList<Integer> newPath = new LinkedList<>(path);
                newPath.addFirst(node);
                res.add(newPath);
            }
        }
    }

    map.put(node, res);
    return res;
}


http://zxi.mytechroad.com/blog/graph/leetcode-797-all-paths-from-source-to-target/
  vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {    
    vector<vector<int>> ans;
    vector<int> path{0};    
    dfs(graph, path, ans);
    return ans;
  }
private:
  void dfs(const vector<vector<int>>& graph,
           vector<int>& path, vector<vector<int>>& ans) {
    if (path.back() == graph.size() - 1) {
      ans.push_back(path);
      return;
    }
    
    for (int next : graph[path.back()]) {
      path.push_back(next);
      dfs(graph, path, ans);
      path.pop_back();
    }
  }


// TLE, but after remove useCache, it passed
// need remove duplicate paths
public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
if (graph == null)
return new ArrayList<>();
Set<LinkedHashSet<Integer>> allPaths = new HashSet<>();
allPathsSourceTarget(graph, 0, new LinkedHashSet<>(), allPaths);

return allPaths.stream().map(el -> new ArrayList<>(el)).collect(Collectors.toList());
}

private void allPathsSourceTarget(int[][] graph, int node, LinkedHashSet<Integer> path,
Set<LinkedHashSet<Integer>> allPaths) {
path.add(node); // path.add(node) should be here
if (node == graph.length - 1) {
allPaths.add(new LinkedHashSet<>(path)); // mistake: allPaths.add(path);
path.remove(node); // don't miss this
return;
}

// cache
if (useCache(allPaths, node, path)) {
path.remove(node);
return;
}

for (int i = 0; i < graph[node].length; i++) {
allPathsSourceTarget(graph, graph[node][i], path, allPaths);
}

path.remove(node);
}

private boolean useCache(Set<LinkedHashSet<Integer>> allPaths, int node, LinkedHashSet<Integer> path) {
boolean nodeVisited = false;
List<LinkedHashSet<Integer>> newAllPaths = new ArrayList<>();

for (LinkedHashSet<Integer> cache : allPaths) {
if (cache.contains(node)) {
nodeVisited = true;
LinkedHashSet<Integer> newPath = new LinkedHashSet<>(path);
boolean foundIt = false;
for (Integer tmp : cache) {
if (foundIt) {
newPath.add(tmp);
} else if (Objects.equals(tmp, node)) {
foundIt = true;
} // else continue
}

// ConcurrentModificationException
// allPaths.add(newPath);

newAllPaths.add(newPath);// don't miss this
}
}

allPaths.addAll(newAllPaths);
return nodeVisited;

}


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts