LeetCode 792 - Number of Matching Subsequences


https://leetcode.com/problems/number-of-matching-subsequences/description/
Given string S and a dictionary of words words, find the number of words[i] that is a subsequence of S.
Example :
Input: 
S = "abcde"
words = ["a", "bb", "acd", "ace"]
Output: 3
Explanation: There are three words in words that are a subsequence of S: "a", "acd", "ace".
Note:
  • All words in words and S will only consists of lowercase letters.
  • The length of S will be in the range of [1, 50000].
  • The length of words will be in the range of [1, 5000].
  • The length of words[i] will be in the range of [1, 50].

Solution 2: Indexing+ Binary Search
Time complexity: O(S + W * L * log(S))
Space complexity: O(S)
S: length of S
W: number of words
L: length of a word
  private List<List<Integer>> pos;
  private boolean isMatch(String word) {
    int l = -1;
    for (char c : word.toCharArray()) {
      List<Integer> p = pos.get(c);
      int index = Collections.binarySearch(p, l + 1);
      if (index < 0) index = -index - 1;
      if (index >= p.size()) return false;
      l = p.get(index);
    }
    return true;
  }
  
  public int numMatchingSubseq(String S, String[] words) {
    pos = new ArrayList<>();
    for (int i = 0; i < 128; ++i)
      pos.add(new ArrayList<Integer>());
    char[] s = S.toCharArray();
    for (int i = 0; i < s.length; ++i)
      pos.get(s[i]).add(i);
    int ans = 0;
    for (String word : words)
      if (isMatch(word)) ++ans;
    return ans;
  }

动态规划(Dynamic Programming)
dp[x][c]表示S[x]之后字符c第一次出现的位置
利用O(len(S))的代价,可以预处理出上述dp数组
对于字典words中的单词word,以O(len(word))的代价可以判断该单词是否为S的子序列
综上,时间复杂度为O(len(S) + len(word) * len(words))
public int numMatchingSubseq(String S, String[] words) { int slen = S.length(); int[] last = new int[26]; int[][] dp = new int[slen + 1][26]; for (int i = 0; i < slen; i++) { int idx = S.charAt(i) - 'a'; for (int x = last[idx]; x <= i; x++) { dp[x][idx] = i + 1; } last[idx] = i + 1; } int cnt = 0; for (String word: words) { cnt += check(dp, word); } return cnt; } public int check(int[][] dp, String word) { int idx = 0; int wlen = word.length(); for (int i = 0; i < wlen; i++) { idx = dp[idx][word.charAt(i) - 'a']; if (idx == 0) return 0; } return 1; }


2.

第一步:把words[i]按首字母分别加入到相应的List中。
第二步:按字符遍历S,每次取出首字母等于S[i]的List。如果List中的words[i]的长度为1,则是子序列,数量+1。若长度不为1,则去掉第一个字符,将后面的字符串按首字母分别加入到相应的List中去。
    public int numMatchingSubseq(String S, String[] words) {
        Map<Character, Deque<String>> map = new HashMap<>();
        for (char c = 'a'; c <= 'z'; c++) {
            map.putIfAbsent(c, new LinkedList<String>());
        }
        for (String word : words) {
            map.get(word.charAt(0)).addLast(word);
        }

        int count = 0;
        for (char c : S.toCharArray()) {
            Deque<String> queue = map.get(c);
            int size = queue.size();
            for (int i = 0; i < size; i++) {
                String word = queue.removeFirst();
                if (word.length() == 1) {
                    count++;
                } else {
                    map.get(word.charAt(1)).addLast(word.substring(1));
                }
            }
        }
        return count;
    }
}

首先定义一个数组index,长度为words的长度,indexindex[i]代表words[i]接下来应当匹配是否在S中出现的字符位置,初始化都为0。当words[i]满足为S子序列时,index[i]=-1
S的字符从前到后开始遍历,假设当前为S[j],遍历index:
  1. index[i] == -1时,continue;
  2. S[j] == words[i].charAt(index[i])时,index[i]++;
  3. index[i] >= words[i].length(),满足条件,总数加1,并且index[i] = -1
    需要注意的是,如果上一轮S[j]时,没有任何words[i].charAt(index[i])S[j],则当S[j + 1] == S[j]时直接跳过此轮。
public int numMatchingSubseq(String S, String[] words) {
int sum = 0;
int[] index = new int[words.length];
for (int i = 0; i < words.length; i++) {
index[i] = 0;
}
boolean hasMatch = false;
char[] cs = S.toCharArray();
for (int m = 0; m < cs.length; m++) {
char c = cs[m];
if (!hasMatch && m > 0 && cs[m - 1] == c) {
continue;
}
if (hasMatch) hasMatch = false;
for (int i = 0; i < words.length; i++) {
if (index[i] == -1) {
continue;
}
if (c == words[i].charAt(index[i])) {
index[i]++;
if (index[i] >= words[i].length()) {
sum++;
index[i] = -1;
hasMatch = true;
}
}
}
}
return sum;
}
Solution 1: Brute Force
Time complexity: O((S + L) * W)
C++ w/o cache TLE
Space complexity: O(1)
C++ w/ cache 155 ms
Space complexity: O(W * L)
  int numMatchingSubseq(const string& S, vector<string>& words) {    
    int ans = 0;
    unordered_map<string, bool> m;
    for (const string& word : words) {
      auto it = m.find(word);
      if (it == m.end()) {
        bool match = isMatch(word, S);
        ans += m[word] = match;
      } else {
        ans += it->second;
      }
    }
    return ans;
  }
  
private:
  bool isMatch(const string& word, const string& S) {    
    int start = 0;
    for (const char c : word) {
      bool found = false;
      for (int i = start; i < S.length(); ++i)
        if (S[i] == c) {
          found = true;
          start = i + 1;          
          break;
        }
      if (!found) return false;
    }
    return true;
  }
public boolean isSubsequence(String s, String t) {
    char[] charS = s.toCharArray();
    char[] charT = t.toCharArray();
    int i = 0;
    int j = 0;
    while (i < s.length() && j < t.length()) {
        if (charS[i] == charT[j]) {
            i++;
        }
        j++;
    }
    return i == s.length();
} 
相似题目在后续工作中写到,如果输入很多S,你想一个一个的检测是否是字符串t的子序列,你应该怎么修改你的代码?
本题应该就是上面写的后续工作。这个题目是上周比赛的第二题。
最开始我是使用上面的代码依次判断是否是子序列,这样提交出现超时,需要对代码进行优化。
优化1:添加hash,统计字符出现的次数,若words[i]字符数量不对,直接返回false。
优化2:添加set,统计已经判断过为子序列的words[i],防止重复判断。
public int numMatchingSubseq(String S, String[] words) {
    int ans = 0;
    Set<String> subsequenceSet = new HashSet<String>();
    int[] alphabet = new int[26];
    char[] charS = S.toCharArray();
    for (int i = 0; i < charS.length; i++) {
        alphabet[charS[i] - 'a']++;
    }
    for (int i = 0; i < words.length; i++) {
        if (subsequenceSet.contains(words[i])) {
            ans++;
        }else if(isSubsequence(charS, alphabet, words[i])) {
            subsequenceSet.add(words[i]);
            ans++;
        }
    }
    return ans;
}

private boolean isSubsequence(char[] charS, int[] alphabet, String word) {
    char[] charWord = word.toCharArray();
    int[] alphWord = new int[26];
    for (int i = 0; i < charWord.length; i++) {
        alphWord[charWord[i] - 'a']++;
    }
    for (int i = 0; i < 26; i++) {
        if (alphWord[i] > alphabet[i]) {
            return false;
        }
    }
    int m = 0;
    int n = 0;
    while (m < charS.length && n < charWord.length) {
        if (charS[m] == charWord[n]) {
            n++;
        }
        m++;
    }

    return n == charWord.length;
}

public int numMatchingSubseq(String S, String[] words) {
if (S == null || words == null)
return 0;

int count = 0;
Map<String, Boolean> cache = new HashMap<>();
for (String word : words) {
if (cache.containsKey(word)) {
count += cache.get(word) == true ? 1 : 0;
continue;
}
boolean isSubseq = isSubseq(S, word);
cache.put(word, isSubseq);
if (isSubseq) {
count++;
}
}

return count;
}

private boolean isSubseq(String S, String word) {
int wordPos = 0;

for (Character sCh : S.toCharArray()) {
if (sCh == word.charAt(wordPos)) {
wordPos++;
}
if (wordPos == word.length()) {
break;
}
}

return wordPos == word.length();
}





Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts