Find maximum product of a triplet in array - GeeksforGeeks


Find maximum product of a triplet in array - GeeksforGeeks
Given an integer array, find a maximum product of a triplet in array.
    Approach 4: O(n) Time, O(1) Space
    1. Scan the array and compute Maximum, second maximum and third maximum element present in the array.
    2. Scan the array and compute Minimum and second minimum element present in the array.
    3. Return the maximum of product of Maximum, second maximum and third maximum and product of Minimum, second minimum and Maximum element.
int maxProduct(int arr[], int n)
{
    // if size is less than 3, no triplet exists
    if (n < 3)
        return -1;
    // Initialize Maximum, second maximum and third
    // maximum element
    int maxA = INT_MIN, maxB = INT_MIN, maxC = INT_MIN;
    // Initialize Minimum and second mimimum element
    int minA = INT_MAX, minB = INT_MAX;
    for (int i = 0; i < n; i++)
    {
        // Update Maximum, second maximum and third
        // maximum element
        if (arr[i] > maxA)
        {
            maxC = maxB;
            maxB = maxA;
            maxA = arr[i];
        }
        // Update second maximum and third maximum element
        else if (arr[i] > maxB)
        {
            maxC = maxB;
            maxB = arr[i];
        }
        // Update third maximum element
        else if (arr[i] > maxC)
            maxC = arr[i];
        // Update Minimum and second mimimum element
        if (arr[i] < minA)
        {
            minB = minA;
            minA = arr[i];
        }
        // Update second mimimum element
        else if(arr[i] < minB)
            minB = arr[i];
    }
    return max(minA * minB * maxA,
               maxA * maxB * maxC);
}

Approach 2: O(n) Time, O(n) Space
  1. Construct four auxiliary arrays leftMax[], rightMax[], leftMin[] and rightMin[] of same size as input array.
  2. Fill leftMax[], rightMax[], leftMin[] and rightMin[] in below manner.
    • leftMax[i] will contain maximum element on left of arr[i] excluding arr[i]. For index 0, left will contain -1.
    • leftMin[i] will contain minimum element on left of arr[i] excluding arr[i]. For index 0, left will contain -1.
    • rightMax[i] will contain maximum element on right of arr[i] excluding arr[i]. For index n-1, right will contain -1.
    • rightMin[i] will contain minimum element on right of arr[i] excluding arr[i]. For index n-1, right will contain -1.
  3. For all array indexes i except first and last index, compute maximum of arr[i]*x*y where x can be leftMax[i] or leftMin[i] and y can be rightMax[i] or rightMin[i].
  4. Return the maximum from step 3.
int maxProduct(int arr[], int n)
{
    // if size is less than 3, no triplet exists
    if (n < 3)
        return -1;
 
    // Construct four auxiliary vectors
    // of size n and initailize them by -1
    vector<int> leftMin(n, -1);
    vector<int> rightMin(n, -1);
    vector<int> leftMax(n, -1);
    vector<int> rightMax(n, -1);
 
    // will contain max product
    int max_product = INT_MIN;
 
    // to store maximum element on left of array
    int max_sum = arr[0];
 
    // to store minimum element on left of array
    int min_sum = arr[0];
 
    // leftMax[i] will contain max element
    // on left of arr[i] excluding arr[i].
    // leftMin[i] will contain min element
    // on left of arr[i] excluding arr[i].
    for (int i = 1; i < n; i++)
    {
        leftMax[i] = max_sum;
        if (arr[i] > max_sum)
            max_sum = arr[i];
 
        leftMin[i] = min_sum;
        if (arr[i] < min_sum)
            min_sum = arr[i];
    }
 
    // reset max_sum to store maximum element on
    // right of array
    max_sum = arr[n - 1];
 
    // reset min_sum to store minimum element on
    // right of array
    min_sum = arr[n - 1];
 
    // rightMax[i] will contain max element
    // on right of arr[i] excluding arr[i].
    // rightMin[i] will contain min element
    // on right of arr[i] excluding arr[i].
    for (int j = n - 2; j >= 0; j--)
    {
        rightMax[j] = max_sum;
        if (arr[j] > max_sum)
            max_sum = arr[j];
 
        rightMin[j] = min_sum;
        if (arr[j] < min_sum)
            min_sum = arr[j];
    }
 
    // For all array indexes i except first and
    // last, compute maximum of arr[i]*x*y where
    // x can be leftMax[i] or leftMin[i] and
    // y can be rightMax[i] or rightMin[i].
    for (int i = 1; i < n - 1; i++)
    {
        int max1 = max(arr[i] * leftMax[i] * rightMax[i],
                    arr[i] * leftMin[i] * rightMin[i]);
 
        int max2 = max(arr[i] * leftMax[i] * rightMin[i],
                    arr[i] * leftMin[i] * rightMax[i]);
 
        max_product = max(max_product, max(max1, max2));
    }
 
    return max_product;
}

Approach 3: O(nlogn) Time, O(1) Space
  1. Sort the array using some efficient in-place sorting algorithm in ascending order.
  2. Return the maximum of product of last three elements of the array and product of first two elements and last element.
int maxProduct(int arr[], int n)
{
    // if size is less than 3, no triplet exists
    if (n < 3)
        return -1;
    // Sort the array in ascending order
    sort(arr, arr + n);
    // Return the maximum of product of last three
    // elements and product of first two elements
    // and last element
    return max(arr[0] * arr[1] * arr[n - 1],
               arr[n - 1] * arr[n - 2] * arr[n - 3]);
}

Approach 1 (Naive, O(n3) time, O(1) Space)
    1. Print the triplet that has maximum product.
    2. Find a minimum product of a triplet in array.
Read full article from Find maximum product of a triplet in array - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts