Program for Fibonacci numbers | GeeksforGeeks


Write a function int fib(int n) that returns F_n
Method 2 ( Use Dynamic Programming )
f[0] = 0;
  f[1] = 1;
  for (i = 2; i <= n; i++)
  {
      /* Add the previous 2 numbers in the series
         and store it */
      f[i] = f[i-1] + f[i-2];
  }
  return f[n];
Method 3 ( Space Otimized Method 2 )
int fib(int n)
{
  int a = 0, b = 1, c, i;
  if( n == 0)
    return a;
  for (i = 2; i <= n; i++)
  {
     c = a + b;
     a = b;
     b = c;
  }
  return b;
}
Method 4 ( Using power of the matrix {{1,1},{1,0}} )
This another O(n) which relies on the fact that if we n times multiply the matrix M = {{1,1},{1,0}} to itself (in other words calculate power(M, n )), then we get the (n+1)th Fibonacci number as the element at row and column (0, 0) in the resultant matrix.
The matrix representation gives the following closed expression for the Fibonacci numbers:


int fib(int n)
{
  int F[2][2] = {{1,1},{1,0}};
  if (n == 0)
      return 0;
  power(F, n-1);
  return F[0][0];
}
void power(int F[2][2], int n)
{
  int i;
  int M[2][2] = {{1,1},{1,0}};
  // n - 1 times multiply the matrix to {{1,0},{0,1}}
  for (i = 2; i <= n; i++)
      multiply(F, M);
}
Method 5 ( Optimized Method 4 )
The method 4 can be optimized to work in O(Logn) time complexity. We can do recursive multiplication to get power(M, n) in the previous method.
int fib(int n)
{
  int F[2][2] = {{1,1},{1,0}};
  if (n == 0)
    return 0;
  power(F, n-1);
  return F[0][0];
}
/* Optimized version of power() in method 4 */
void power(int F[2][2], int n)
{
  if( n == 0 || n == 1)
      return;
  int M[2][2] = {{1,1},{1,0}};
  power(F, n/2);
  multiply(F, F);
  if (n%2 != 0)
     multiply(F, M);
} 
void multiply(int F[2][2], int M[2][2])
{
  int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
  int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
  int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
  int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
  F[0][0] = x;
  F[0][1] = y;
  F[1][0] = z;
  F[1][1] = w;
}
http://www.geeksforgeeks.org/matrix-exponentiation/
What is the minimum time complexity to find n’th Fibonacci Number?
We can find n’th Fibonacci Number in O(Log n) time using Matrix Exponentiation.
F(n) = a*F(n-1) + b*F(n-2) + c*F(n-3)   for n >= 3 
                                 . . . . . Equation (1)
where a, b and c are constants. 

For this recurrence relation it depends on three previous values. 
Now we will try to represent Equation (1) in terms of matrix. 

[First Matrix] = [Second matrix] * [Third Matrix]
| F(n)   |     =   Matrix 'C'    *  | F(n-1) |
| F(n-1) |                          | F(n-2) |
| F(n-2) |                          | F(n-3) |
 
Dimension of the first matrix is 3 x 1 . 
Dimension of third matrix is also 3 x 1. 

So the dimension of the second matrix must be 3 x 3 
[For multiplication rule to be satisfied.]

Now we need to fill the Matrix 'C'. 

So according to our equation. 
F(n) = a*F(n-1) + b*F(n-2) + c*F(n-3)
F(n-1) = F(n-1)
F(n-2) = F(n-2)

C = [a b c
     1 0 0
     0 1 0]

Now the relation between matrix becomes : 
[First Matrix]  [Second matrix]       [Third Matrix]
| F(n)   |  =  | a b c |  *           | F(n-1) |
| F(n-1) |     | 1 0 0 |              | F(n-2) |
| F(n-2) |     | 0 1 0 |              | F(n-3) |

Lets assume the initial values for this case :- 
F(0) = 0
F(1) = 1
F(2) = 1

So, we need to get F(n) in terms of these values.

So, for n = 3 Equation (1) changes to 
| F(3) |  =  | a b c |  *           | F(2) |
| F(2) |     | 1 0 0 |              | F(1) |
| F(1) |     | 0 1 0 |              | F(0) |

void multiply(int a[3][3], int b[3][3])
{
    // Creating an auxiliary matrix to store elements
    // of the multiplication matrix
    int mul[3][3];
    for (int i = 0; i < 3; i++)
    {
        for (int j = 0; j < 3; j++)
        {
            mul[i][j] = 0;
            for (int k = 0; k < 3; k++)
                mul[i][j] += a[i][k]*b[k][j];
        }
    }
    // storing the muliplication resul in a[][]
    for (int i=0; i<3; i++)
        for (int j=0; j<3; j++)
            a[i][j] = mul[i][j];  // Updating our matrix
}
// Function to compute F raise to power n-2.
int power(int F[3][3], int n)
{
    int M[3][3] = {{1,1,1}, {1,0,0}, {0,1,0}};
    // Multiply it with initial values i.e with
    // F(0) = 0, F(1) = 1, F(2) = 1
    if (n==1)
        return F[0][0] + F[0][1];
    power(F, n/2);
    multiply(F, F);
    if (n%2 != 0)
        multiply(F, M);
    // Multiply it with initial values i.e with
    // F(0) = 0, F(1) = 1, F(2) = 1
    return F[0][0] + F[0][1] ;
}
// Return n'th term of a series defined using below
// recurrence relation.
// f(n) is defined as
//    f(n) = f(n-1) + f(n-2) + f(n-3), n>=3
// Base Cases :
//    f(0) = 0, f(1) = 1, f(2) = 1
int findNthTerm(int n)
{
    int F[3][3] = {{1,1,1}, {1,0,0}, {0,1,0}} ;
    return power(F, n-2);
}


Ways to represent a number as a sum of 1’s and 2’s
Given a positive integer N. The task is to find the number of ways of representing N as a sum of 1s and 2s.
For N = 1, answer is 1.
For N = 2. (1 + 1), (2), answer is 2.
For N = 3. (1 + 1 + 1), (2 + 1), (1 + 2), answer is 3.
For N = 4. (1 + 1 + 1 + 1), (2 + 1 + 1), (1 + 2 + 1), (1 + 1 + 2), (2 + 2) answer is 5.
And so on.
It can be observe that it form Fibonacci Series. So, the number of ways of representing N as a sum of 1s and 2s is (N + 1)th Fibonacci number.
How ?
We can easily see that the recursive function is exactly same as Fibonacci Numbers. To obtain the sum of N, we can add 1 to N – 1. Also, we can add 2 to N – 2. And only 1 and 2 are allowed to make the sum N. So, to obtain sum N using 1s and 2s, total ways are: number of ways to obtain (N – 1) + number of ways to obtain (N – 2).
We can find N’th Fibonacci Number in O(Log n) time
void multiply(int F[2][2], int M[2][2])
{
    int x =  F[0][0]*M[0][0] + F[0][1]*M[1][0];
    int y =  F[0][0]*M[0][1] + F[0][1]*M[1][1];
    int z =  F[1][0]*M[0][0] + F[1][1]*M[1][0];
    int w =  F[1][0]*M[0][1] + F[1][1]*M[1][1];
 
    F[0][0] = x;
    F[0][1] = y;
    F[1][0] = z;
    F[1][1] = w;
}
 
// Power function in log n
void power(int F[2][2], int n)
{
    if( n == 0 || n == 1)
        return;
    int M[2][2] = {{1,1},{1,0}};
 
    power(F, n/2);
    multiply(F, F);
 
    if (n%2 != 0)
        multiply(F, M);
}
 
/* function that returns (n+1)th Fibonacci number
   Or number of ways to represent n as sum of 1's
   2's */
int countWays(int n)
{
    int F[2][2] = {{1,1},{1,0}};
    if (n == 0)
        return 0;
    power(F, n);
    return F[0][0];
}

Read full article from Program for Fibonacci numbers | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts