Tuesday, December 8, 2015

Partition a set into two subsets such that the difference of subset sums is minimum - GeeksforGeeks


LeetCode 416 - Partition Equal Subset Sum
Partition a set into two subsets such that the difference of subset sums is minimum - GeeksforGeeks
Given a set of integers, the task is to divide it into two sets S1 and S2 such that the absolute difference between their sums is minimum.
If there is a set S with n elements, then if we assume Subset1 has m elements, Subset2 must have n-m elements and the value of abs(sum(Subset1) – sum(Subset2)) should be minimum.
The problem can be solved using dynamic programming when the sum of the elements is not too big. We can create a 2D array dp[n+1][sum+1] where n is number of elements in given set and sum is sum of all elements. We can construct the solution in bottom up manner.
The task is to divide the set into two parts. 
We will consider the following factors for dividing it. 
Let 
  dp[n+1][sum+1] = {1 if some subset from 1st to i'th has a sum 
                      equal to j
                   0 otherwise}
    
    i ranges from {1..n}
    j ranges from {0..(sum of all elements)}  

So      
    dp[n+1][sum+1]  will be 1 if 
    1) The sum j is achieved including i'th item
    2) The sum j is achieved excluding i'th item.

Let sum of all the elements be S.  

To find Minimum sum difference, w have to find j such 
that Min{sum - j*2  : dp[n][j]  == 1 } 
    where j varies from 0 to sum/2

The idea is, sum of S1 is j and it should be closest
to sum/2, i.e., 2*j should be closest to sum.
// Returns the minimum value of the difference of the two sets.
int findMin(int arr[], int n)
{
    // Calculate sum of all elements
    int sum = 0;
    for (int i = 0; i < n; i++)
        sum += arr[i];
    // Create an array to store results of subproblems
    bool dp[n+1][sum+1];
    // Initialize first column as true. 0 sum is possible
    // with all elements.
    for (int i = 0; i <= n; i++)
        dp[i][0] = true;
    // Initialize top row, except dp[0][0], as false. With
    // 0 elements, no other sum except 0 is possible
    for (int i = 1; i <= sum; i++)
        dp[0][i] = false;
    // Fill the partition table in bottom up manner
    for (int i=1; i<=n; i++)
    {
        for (int j=1; j<=sum; j++)
        {
            // If i'th element is excluded
            dp[i][j] = dp[i-1][j];
            // If i'th element is included
            if (arr[i-1] <= j)
                dp[i][j] |= dp[i-1][j-arr[i-1]];
        }
    }
  
    // Initialize difference of two sums.
    int diff = INT_MAX;
     
    // Find the largest j such that dp[n][j]
    // is true where j loops from sum/2 t0 0
    for (int j=sum/2; j>=0; j--)
    {
        // Find the
        if (dp[n][j] == true)
        {
            diff = sum-2*j;
            break;
        }
    }
    return diff;
}
The recursive approach is to generate all possible sums from all the values of array and to check which solution is the most optimal one.
To generate sums we either include the i’th item in set 1 or don’t include, i.e., include in set 2.
int findMinRec(int arr[], int i, int sumCalculated, int sumTotal)
{
    // If we have reached last element.  Sum of one
    // subset is sumCalculated, sum of other subset is
    // sumTotal-sumCalculated.  Return absolute difference
    // of two sums.
    if (i==0)
        return abs((sumTotal-sumCalculated) - sumCalculated);
    // For every item arr[i], we have two choices
    // (1) We do not include it first set
    // (2) We include it in first set
    // We return minimum of two choices
    return min(findMinRec(arr, i-1, sumCalculated+arr[i-1], sumTotal),
               findMinRec(arr, i-1, sumCalculated, sumTotal));
}
// Returns minimum possible difference between sums
// of two subsets
int findMin(int arr[], int n)
{
    // Compute total sum of elements
    int sumTotal = 0;
    for (int i=0; i<n; i++)
        sumTotal += arr[i];
    // Compute result using recursive function
    return findMinRec(arr, n, 0, sumTotal);
}
Time Complexity:
All the sums can be generated by either 
(1) including that element in set 1.
(2) without including that element in set 1.
So possible combinations are :-  
arr[0]   (1 or 2)  -> 2 values
arr[1]    (1 or 2)  -> 2 values
.
.
.
arr[n]     (2 or 2)  -> 2 values
So time complexity will be 2*2*..... *2 (For n times),
that is O(2^n).
http://www.geeksforgeeks.org/dynamic-programming-set-18-partition-problem/
Partition problem is to determine whether a given set can be partitioned into two subsets such that the sum of elements in both subsets is same.
Examples
arr[] = {1, 5, 11, 5}
Output: true 
The array can be partitioned as {1, 5, 5} and {11}

arr[] = {1, 5, 3}
Output: false 
The array cannot be partitioned into equal sum sets.
   // A utility function that returns true if there is a
    // subset of arr[] with sun equal to given sum
    static boolean isSubsetSum (int arr[], int n, int sum)
    {
        // Base Cases
        if (sum == 0)
            return true;
        if (n == 0 && sum != 0)
            return false;
        // If last element is greater than sum, then ignore it
        if (arr[n-1] > sum)
            return isSubsetSum (arr, n-1, sum);
        /* else, check if sum can be obtained by any of
           the following
        (a) including the last element
        (b) excluding the last element
        */
        return isSubsetSum (arr, n-1, sum) ||
               isSubsetSum (arr, n-1, sum-arr[n-1]);
    }
    // Returns true if arr[] can be partitioned in two
    // subsets of equal sum, otherwise false
    static boolean findPartition (int arr[], int n)
    {
        // Calculate sum of the elements in array
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        // If sum is odd, there cannot be two subsets
        // with equal sum
        if (sum%2 != 0)
            return false;
        // Find if there is subset with sum equal to half
        // of total sum
        return isSubsetSum (arr, n, sum/2);
    }
The problem can be solved using dynamic programming when the sum of the elements is not too big. We can create a 2D array part[][] of size (sum/2)*(n+1). And we can construct the solution in bottom up manner such that every filled entry has following property
part[i][j] = true if a subset of {arr[0], arr[1], ..arr[j-1]} has sum 
             equal to i, otherwise false
    // Returns true if arr[] can be partitioned in two subsets of
    // equal sum, otherwise false
    static boolean findPartition (int arr[], int n)
    {
        int sum = 0;
        int i, j;
        // Caculcate sun of all elements
        for (i = 0; i < n; i++)
            sum += arr[i];
        if (sum%2 != 0)
            return false;
        boolean part[][]=new boolean[sum/2+1][n+1];
        // initialize top row as true
        for (i = 0; i <= n; i++)
            part[0][i] = true;
        // initialize leftmost column, except part[0][0], as 0
        for (i = 1; i <= sum/2; i++)
            part[i][0] = false;
        // Fill the partition table in botton up manner
        for (i = 1; i <= sum/2; i++)
        {
            for (j = 1; j <= n; j++)
            {
                part[i][j] = part[i][j-1];
                if (i >= arr[j-1])
                    part[i][j] = part[i][j] ||
                                 part[i - arr[j-1]][j-1];
            }
        }
        /* // uncomment this part to print table
        for (i = 0; i <= sum/2; i++)
        {
            for (j = 0; j <= n; j++)
                printf ("%4d", part[i][j]);
            printf("\n");
        } */
        return part[sum/2][n];
    }
Read full article from Partition a set into two subsets such that the difference of subset sums is minimum - GeeksforGeeks

No comments:

Post a Comment

Labels

GeeksforGeeks (1107) LeetCode (993) Algorithm (795) Review (766) to-do (633) LeetCode - Review (514) Classic Algorithm (324) Dynamic Programming (293) Classic Interview (288) Google Interview (242) Tree (145) POJ (139) Difficult Algorithm (132) LeetCode - Phone (127) EPI (125) Different Solutions (120) Bit Algorithms (118) Lintcode (113) Cracking Coding Interview (110) Smart Algorithm (109) Math (107) HackerRank (89) Binary Tree (82) Binary Search (81) Graph Algorithm (74) Greedy Algorithm (72) DFS (67) LeetCode - Extended (62) Interview Corner (61) Stack (60) List (58) Advanced Data Structure (56) BFS (54) Codility (54) ComProGuide (52) Algorithm Interview (50) Geometry Algorithm (48) Binary Search Tree (46) USACO (46) Trie (45) Mathematical Algorithm (42) ACM-ICPC (41) Interval (41) Data Structure (40) Knapsack (40) Space Optimization (40) Jobdu (39) LeetCode Hard (39) Recursive Algorithm (39) Matrix (38) String Algorithm (38) Backtracking (36) Codeforces (36) Introduction to Algorithms (36) Must Known (36) Beauty of Programming (35) Sort (35) Union-Find (34) Array (33) prismoskills (33) Segment Tree (32) Sliding Window (32) Data Structure Design (31) HDU (31) Google Code Jam (30) Permutation (30) Puzzles (30) Array O(N) (29) Company-Airbnb (29) Company-Zenefits (28) Microsoft 100 - July (28) Palindrome (28) to-do-must (28) Priority Queue (27) Random (27) Graph (26) Company - LinkedIn (25) GeeksQuiz (25) Logic Thinking (25) Pre-Sort (25) hihocoder (25) Queue (24) Company-Facebook (23) High Frequency (23) Post-Order Traverse (23) TopCoder (23) Algorithm Game (22) Bisection Method (22) Hash (22) Binary Indexed Trees (21) DFS + Review (21) Lintcode - Review (21) Brain Teaser (20) CareerCup (20) Company - Twitter (20) Merge Sort (20) O(N) (20) Follow Up (19) Time Complexity (19) Two Pointers (19) UVA (19) Ordered Stack (18) Probabilities (18) Company-Uber (17) Game Theory (17) Topological Sort (17) Codercareer (16) Heap (16) Shortest Path (16) String Search (16) Tree Traversal (16) itint5 (16) Difficult (15) Iterator (15) BST (14) Number (14) Number Theory (14) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Euclidean GCD (13) KMP (13) Long Increasing Sequence(LIS) (13) Majority (13) mitbbs (13) Combination (12) Computational Geometry (12) LeetCode - Classic (12) Modify Tree (12) Reconstruct Tree (12) Reservoir Sampling (12) Reverse Thinking (12) 尺取法 (12) AOJ (11) DFS+Backtracking (11) Fast Power Algorithm (11) Graph DFS (11) LCA (11) LeetCode - DFS (11) Miscs (11) Princeton (11) Proof (11) Tree DP (11) X Sum (11) 挑战程序设计竞赛 (11) Bisection (10) Bucket Sort (10) Coin Change (10) Company - Microsoft (10) DFS+Cache (10) Facebook Hacker Cup (10) HackerRank Easy (10) O(1) Space (10) Rolling Hash (10) SPOJ (10) Theory (10) Tutorialhorizon (10) DP-Multiple Relation (9) DP-Space Optimization (9) Divide and Conquer (9) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Prefix Sum (9) Quick Sort (9) Simulation (9) Stack Overflow (9) Stock (9) System Design (9) TreeMap (9) Use XOR (9) Book Notes (8) Bottom-Up (8) Company-Amazon (8) DFS+BFS (8) LeetCode - DP (8) Left and Right Array (8) Linked List (8) Longest Common Subsequence(LCS) (8) Prime (8) Suffix Tree (8) Tech-Queries (8) Traversal Once (8) 穷竭搜索 (8) Algorithm Problem List (7) Expression (7) Facebook Interview (7) Fibonacci Numbers (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Interval Tree (7) Inversion (7) Kadane’s Algorithm (7) Level Order Traversal (7) Math-Divisible (7) Probability DP (7) Quick Select (7) Radix Sort (7) n00tc0d3r (7) 蓝桥杯 (7) Catalan Number (6) Classic Data Structure Impl (6) DFS+DP (6) DP - Tree (6) DP-Print Solution (6) Dijkstra (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Manacher (6) Minimum Spanning Tree (6) Morris Traversal (6) Multiple Data Structures (6) One Pass (6) Programming Pearls (6) Pruning (6) Rabin-Karp (6) Randomized Algorithms (6) Sampling (6) Schedule (6) Stream (6) Suffix Array (6) Threaded (6) TreeSet (6) Xpost (6) reddit (6) AI (5) Algorithm - Brain Teaser (5) Art Of Programming-July (5) Big Data (5) Brute Force (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) Cycle (5) DP-Include vs Exclude (5) Fast Slow Pointers (5) Find Rule (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) Matrix Chain Multiplication (5) Maze (5) Microsoft Interview (5) Pre-Sum (5) Quadtrees (5) Quick Partition (5) Quora (5) SPFA(Shortest Path Faster Algorithm) (5) Subarray Sum (5) Sudoku (5) Sweep Line (5) Word Search (5) jiuzhang (5) 单调栈 (5) 树形DP (5) 1point3acres (4) Abbreviation (4) Anagram (4) Anagrams (4) Approximate Algorithm (4) Backtracking-Include vs Exclude (4) Brute Force - Enumeration (4) Chess Game (4) Consistent Hash (4) Distributed (4) Eulerian Cycle (4) Flood fill (4) Graph-Classic (4) HackerRank AI (4) Histogram (4) Kadane Max Sum (4) Knapsack - Mixed (4) Knapsack - Unbounded (4) LeetCode - Recursive (4) LeetCode - TODO (4) MST (4) MinMax (4) N Queens (4) Nerd Paradise (4) Parallel Algorithm (4) Practical Algorithm (4) Probability (4) Programcreek (4) Spell Checker (4) Stock Maximize (4) Subset Sum (4) Subsets (4) Symbol Table (4) Triangle (4) Water Jug (4) algnotes (4) fgdsb (4) to-do-2 (4) 最大化最小值 (4) A Star (3) Algorithm - How To (3) Algorithm Design (3) B Tree (3) Big Data Algorithm (3) Caterpillar Method (3) Coins (3) Company - Groupon (3) Company - Indeed (3) Cumulative Sum (3) DP-Fill by Length (3) DP-Two Variables (3) Dedup (3) Dequeue (3) Dropbox (3) Easy (3) Finite Automata (3) Github (3) GoLang (3) Graph - Bipartite (3) Include vs Exclude (3) Joseph (3) Jump Game (3) K (3) Knapsack-多重背包 (3) LeetCode - Bit (3) Linked List Merge Sort (3) LogN (3) Master Theorem (3) Min Cost Flow (3) Minesweeper (3) Missing Numbers (3) NP Hard (3) O(N) Hard (3) Online Algorithm (3) Pascal's Triangle (3) Pattern Match (3) Project Euler (3) Rectangle (3) Scala (3) SegmentFault (3) Shuffle (3) Sieve of Eratosthenes (3) Stack - Smart (3) State Machine (3) Subtree (3) Transform Tree (3) Trie + DFS (3) Two Pointers Window (3) Warshall Floyd (3) With Random Pointer (3) Word Ladder (3) bookkeeping (3) codebytes (3) Activity Selection Problem (2) Advanced Algorithm (2) AnAlgorithmADay (2) Application of Algorithm (2) Array Merge (2) BOJ (2) BT - Path Sum (2) Balanced Binary Search Tree (2) Bellman Ford (2) Binary Search - Smart (2) Binomial Coefficient (2) Bit Counting (2) Bit Mask (2) Bit-Difficult (2) Bloom Filter (2) Book Coding Interview (2) Branch and Bound Method (2) Clock (2) Codesays (2) Company - Baidu (2) Company-Snapchat (2) Complete Binary Tree (2) DFS+BFS, Flood Fill (2) DP - DFS (2) DP-3D Table (2) DP-Classical (2) DP-Output Solution (2) DP-Slide Window Gap (2) DP-i-k-j (2) DP-树形 (2) Distributed Algorithms (2) Divide and Conqure (2) Doubly Linked List (2) Edit Distance (2) Factor (2) Forward && Backward Scan (2) GoHired (2) Graham Scan (2) Graph BFS+DFS (2) Graph Coloring (2) Graph-Cut Vertices (2) Hamiltonian Cycle (2) Huffman Tree (2) In-order Traverse (2) Include or Exclude Last Element (2) Information Retrieval (2) Interview - Linkedin (2) Invariant (2) Islands (2) Linked Interview (2) Linked List Sort (2) Longest SubArray (2) Lucene-Solr (2) Math-Remainder Queue (2) Matrix Power (2) Median (2) Minimum Vertex Cover (2) Negative All Values (2) Number Each Digit (2) Numerical Method (2) Object Design (2) Order Statistic Tree (2) Parent-Only Tree (2) Parentheses (2) Parser (2) Peak (2) Programming (2) Range Minimum Query (2) Regular Expression (2) Return Multiple Values (2) Reuse Forward Backward (2) Robot (2) Rosettacode (2) Scan from right (2) Search (2) SimHash (2) Simple Algorithm (2) Skyline (2) Spatial Index (2) Strongly Connected Components (2) Summary (2) TV (2) Tile (2) Traversal From End (2) Tree Sum (2) Tree Traversal Return Multiple Values (2) Tree Without Tree Predefined (2) Word Break (2) Word Graph (2) Word Trie (2) Yahoo Interview (2) Young Tableau (2) 剑指Offer (2) 数位DP (2) 1-X (1) 51Nod (1) Akka (1) Algorithm - New (1) Algorithm Series (1) Algorithms Part I (1) Analysis of Algorithm (1) Array-Element Index Negative (1) Array-Rearrange (1) Augmented BST (1) Auxiliary Array (1) Auxiliary Array: Inc&Dec (1) BACK (1) BK-Tree (1) BZOJ (1) Basic (1) Bayes (1) Beauty of Math (1) Big Integer (1) Big Number (1) Binary (1) Binary Sarch Tree (1) Binary String (1) Binary Tree Variant (1) Bipartite (1) Bit-Missing Number (1) BitMap (1) BitMap index (1) BitSet (1) Bug Free Code (1) BuildIt (1) C/C++ (1) CC Interview (1) Cache (1) Calculate Height at Same Recusrion (1) Cartesian tree (1) Check Tree Property (1) Chinese (1) Circular Buffer (1) Cloest (1) Clone (1) Code Quality (1) Codesolutiony (1) Company - Alibaba (1) Company - Palantir (1) Company - WalmartLabs (1) Company-Apple (1) Company-Epic (1) Company-Salesforce (1) Company-Yelp (1) Compression Algorithm (1) Concurrency (1) Cont Improvement (1) Convert BST to DLL (1) Convert DLL to BST (1) Custom Sort (1) Cyclic Replacement (1) DFS-Matrix (1) DP - Probability (1) DP Fill Diagonal First (1) DP-Difficult (1) DP-End with 0 or 1 (1) DP-Fill Diagonal First (1) DP-Graph (1) DP-Left and Right Array (1) DP-MaxMin (1) DP-Memoization (1) DP-Node All Possibilities (1) DP-Optimization (1) DP-Preserve Previous Value (1) DP-Print All Solution (1) Database (1) Detect Negative Cycle (1) Diagonal (1) Directed Graph (1) Do Two Things at Same Recusrion (1) Domino (1) Dr Dobb's (1) Duplicate (1) Equal probability (1) External Sort (1) FST (1) Failure Function (1) Fraction (1) Front End Pointers (1) Funny (1) Fuzzy String Search (1) Game (1) Generating Function (1) Generation (1) Genetic algorithm (1) GeoHash (1) Geometry - Orientation (1) Google APAC (1) Graph But No Graph (1) Graph Transpose (1) Graph Traversal (1) Graph-Coloring (1) Graph-Longest Path (1) Gray Code (1) HOJ (1) Hanoi (1) Hard Algorithm (1) How Hash (1) How to Test (1) Improve It (1) In Place (1) Inorder-Reverse Inorder Traverse Simultaneously (1) Interpolation search (1) Interview (1) Interview - Facebook (1) Isomorphic (1) JDK8 (1) K Dimensional Tree (1) Knapsack - Fractional (1) Knapsack - ZeroOnePack (1) Knight (1) Knuth Shuffle (1) Kosaraju’s algorithm (1) Kruskal (1) Kth Element (1) Least Common Ancestor (1) LeetCode - Binary Tree (1) LeetCode - Coding (1) LeetCode - Detail (1) LeetCode - Related (1) Linked List Reverse (1) Linkedin (1) Linkedin Interview (1) Local MinMax (1) Logic Pattern (1) Longest Common Subsequence (1) Longest Common Substring (1) Longest Prefix Suffix(LPS) (1) Machine Learning (1) Maintain State (1) Manhattan Distance (1) Map && Reverse Map (1) Math - Induction (1) Math-Multiply (1) Math-Sum Of Digits (1) Matrix - O(N+M) (1) Matrix BFS (1) Matrix Graph (1) Matrix Search (1) Matrix+DP (1) Matrix-Rotate (1) Max Min So Far (1) Memory-Efficient (1) MinHash (1) MinMax Heap (1) Monotone Queue (1) Monto Carlo (1) Multi-End BFS (1) Multi-Reverse (1) Multiple DFS (1) Multiple Tasks (1) Next Element (1) Next Successor (1) Offline Algorithm (1) PAT (1) Parenthesis (1) Partition (1) Path Finding (1) Patience Sort (1) Persistent (1) Pigeon Hole Principle (1) Power Set (1) Pratical Algorithm (1) PreProcess (1) Probabilistic Data Structure (1) Python (1) Queue & Stack (1) RSA (1) Ranking (1) Rddles (1) ReHash (1) Realtime (1) Recurrence Relation (1) Recursive DFS (1) Recursive to Iterative (1) Red-Black Tree (1) Region (1) Resources (1) Reverse Inorder Traversal (1) Robin (1) Selection (1) Self Balancing BST (1) Similarity (1) Sort && Binary Search (1) Square (1) Streaming Algorithm (1) String Algorithm. Symbol Table (1) String DP (1) String Distance (1) SubMatrix (1) Subsequence (1) System of Difference Constraints(差分约束系统) (1) TSP (1) Ternary Search Tree (1) Test (1) Test Cases (1) Thread (1) TimSort (1) Top-Down (1) Tournament (1) Tournament Tree (1) Transform Tree in Place (1) Tree Diameter (1) Tree Rotate (1) Trie and Heap (1) Trie vs Hash (1) Trie vs HashMap (1) Triplet (1) Two Data Structures (1) Two Stacks (1) USACO - Classical (1) USACO - Problems (1) UyHiP (1) Valid Tree (1) Vector (1) Virtual Matrix (1) Wiggle Sort (1) Wikipedia (1) ZOJ (1) ZigZag (1) baozitraining (1) codevs (1) cos126 (1) javabeat (1) jum (1) namic Programming (1) sqrt(N) (1) 两次dijkstra (1) 九度 (1) 二进制枚举 (1) 夹逼法 (1) 归一化 (1) 折半枚举 (1) 枚举 (1) 状态压缩DP (1) 男人八题 (1) 英雄会 (1) 逆向思维 (1)

Popular Posts