LintCode 179 - Update Bits


http://www.lintcode.com/en/problem/update-bits/
Given two 32-bit numbers, N and M, and two bit positions, i and j. Write a method to set all bits between i and j in N equal to M (e g , M becomes a substring of N located at i and starting at j)
Example
Given N=(10000000000)2M=(10101)2i=2j=6
return N=(10001010100)2
Note
In the function, the numbers N and M will given in decimal, you should also return a decimal number.
Challenge
Minimum number of operations?
Clarification
You can assume that the bits j through i have enough space to fit all of M. That is, if M=10011, you can assume that there are at least 5 bits between j and i. You would not, for example, have j=3 and i=2, because M could not fully fit between bit 3 and bit 2.
http://www.jiuzhang.com/solutions/update-bits/
    int updateBits(int n, int m, int i, int j) {
        int mask;
        if (j < 31) {
            mask = ~((1 << (j + 1)) - (1 << i));
        } else {
            mask = (1 << i) - 1;
        }
        return (m << i) + (mask & n);
    }
http://blog.welkinlan.com/2015/05/26/724/
1. Make a & mask to transform N[i…j] to 0.
2. Add M to N[i…j].

Way 1: single bit set
http://www.catonmat.net/blog/low-level-bit-hacks-you-absolutely-must-know/
Check the bit of M is 1 or 0, if 1, set the corresponding bit of M as 1, else, set 0.
Time: O(j - i) , j - i < 32, so it can be regarded as O(1)
Space: O(1)


    int updateBits(int n, int m, int i, int j) {
        for(; i <= j; i++){
            if(m & 1) n = n | (1<<i);
            else n = n & ~(1<<i);
            m = m>>1;
        }
        return n;
    }
n = n & ~(1 << k); 就是把n中的第k个bit设为0
n = n | ((m & (1<<(k-i)))<<i);
  1. m & (1<<(k-i)) 是从m的第一个bit开始扫描.因为已知j-i = size of (m)2
  2. ((m & (1<<(k-i)))<<i) 扫描后, 往左shift i位对准n上的i位.
  3. n = n | ((m & (1<<(k-i)))<<i) 把n的第i位到j位设为m的0~(j-i)位
    public int updateBits(int n, int m, int i, int j) {
        // write your code here
        for(int k = i ; k <= j; k++) {
            n = n & ~(1 << k); // set kth bit in n to 0
            n = n | ((m & (1<<(k-i)))<<i); //set kth bit in n to m's kth bit
        }
        return n;
    }
Way 2: several bits set together
First, we need a mask, which is 0 from i to j, and 1 for other bits;
Then N & mask, set bits from i to j as 0;
Now we bitwise shift left m by i bits
At last, just bitwise or (N & mask) and shifted m. (set 1)

Another version, the mask is 1 from i to j, and 0 for other bits;
Then N or mask, set bits from i to j as 1;
Now we bitwise shift left m by ibits
At last, just bitwise & (N | mask) and shifted m. (set 0)

The key is how to get mask?
We can easily get the left part of mask by left shift. However, we cannot directly use right shift the same way as we get right part. Since for signed int, the logical shift and arithmetic shift works differently.
http://blog.csdn.net/hengshan/article/details/6440549(explain how left and right shift works)
From the paragraph above, we know that the logical shift is caused by signed bit.
In this problem, bits >= i will be set to 0, however, bit <= 31 for input.
So for right part, bits from i to 31 will be  zero. So the bit[31] is always 0. Which means the signed bit of right part is always 0. Then I can use INT_MAX as the initial right part value than just shift right, which will only add 0 from the left side.

Time: O(1)
Space: O(1)

my version(both left and right shift):

    int updateBits(int n, int m, int i, int j) {
        // write your code here
        
        int left = ~0 << (j + 1) ;
        if(j >= 31) left = 0;
        //for signed int, left shift is logical shift;
        //           while right shift is arithmetic shift.
        // so we cannot directly use right shift to get mask;
        //int right = ~0 >> (32 - i);
        int right = INT_MAX;
        right = right >> (31 - i);
        int mask = left | right;
        return m<<i | (mask & n);
    }

Common version: ( only use left shift)
The right part in an Integer than from 31 to i bit is zero, and from i - 1 to 0 bit is 1
Beside right shift INT_MAX, we can also left shift 1 to i bit, then minus 1.
http://algorithm.yuanbin.me/math_and_bit_manipulation/update_bits.html
Time: O(1)
Space: O(1)


    int updateBits(int n, int m, int i, int j) {
        // write your code here
        int left = ~0 << (j + 1);
        if( j == 31) left = 0;
        int right = (1 << i) - 1;//Don't forget parenthesis
        int mask = left | right;
        return (n & mask) | (m<<i);
    }
KEY: 0 | x = x

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts