http://poj.org/problem?id=2481
Farmer John's cows have discovered that the clover growing along the ridge of the hill (which we can think of as a one-dimensional number line) in his field is particularly good.
Farmer John has N cows (we number the cows from 1 to N). Each of Farmer John's N cows has a range of clover that she particularly likes (these ranges might overlap). The ranges are defined by a closed interval [S,E].
But some cows are strong and some are weak. Given two cows: cowi and cowj, their favourite clover range is [Si, Ei] and [Sj, Ej]. If Si <= Sj and Ej <= Ei and Ei - Si > Ej - Sj, we say that cowi is stronger than cowj.
For each cow, how many cows are stronger than her? Farmer John needs your help!
Farmer John has N cows (we number the cows from 1 to N). Each of Farmer John's N cows has a range of clover that she particularly likes (these ranges might overlap). The ranges are defined by a closed interval [S,E].
But some cows are strong and some are weak. Given two cows: cowi and cowj, their favourite clover range is [Si, Ei] and [Sj, Ej]. If Si <= Sj and Ej <= Ei and Ei - Si > Ej - Sj, we say that cowi is stronger than cowj.
For each cow, how many cows are stronger than her? Farmer John needs your help!
Input
The input contains multiple test cases.
For each test case, the first line is an integer N (1 <= N <= 105), which is the number of cows. Then come N lines, the i-th of which contains two integers: S and E(0 <= S < E <= 105) specifying the start end location respectively of a range preferred by some cow. Locations are given as distance from the start of the ridge.
The end of the input contains a single 0.
For each test case, the first line is an integer N (1 <= N <= 105), which is the number of cows. Then come N lines, the i-th of which contains two integers: S and E(0 <= S < E <= 105) specifying the start end location respectively of a range preferred by some cow. Locations are given as distance from the start of the ridge.
The end of the input contains a single 0.
Output
For each test case, output one line containing n space-separated integers, the i-th of which specifying the number of cows that are stronger than cowi.
Sample Input
3 1 2 0 3 3 4 0
Sample Output
1 0 0
题意是给出了一堆牛的能力值,这些能力值是用一定区间表示的。一头牛比另一头牛强壮就是这头牛的能力值区间真包含了另一头牛的能力值区间(能力值区间相等不能算作比其强壮)。问对于每一头牛来说,在这个群体中有多少头牛比自己强壮。
009 | class TNode implements Comparable{ |
010 | int s; //左端点 |
011 | int e; //右端点 |
012 | int label; //牛的序号 |
013 | public int compareTo(Object o) { |
014 | int v=((TNode)o).e; |
015 | if ( this .e!=v) //按右端点降序排列 |
016 | return v- this .e; |
017 | return this .s-((TNode)o).s; //右端点相等,按左端点升序排序 |
018 | } |
019 |
020 | public String toString(){ |
021 | return ( "[" +s+ "," +e+ "]" ); |
022 | } |
023 | } |
024 |
025 | public class Main{ |
026 | static int N= 100015 ; |
027 | TNode[] cow; |
028 | int cal[]; //树状数组 |
029 | int res[]; |
030 | int maxn; |
031 |
032 | public Main(){ |
033 | |
034 | } |
035 | |
036 | |
037 |
038 | private int lowbit( int t){ //计算cal[t]展开的项数 |
039 | return t&(-t); |
040 | } |
041 |
042 | private int Sum( int k){ //求前k项的和. |
043 | int sum= 0 ; |
044 | while (k> 0 ){ |
045 | sum+=cal[k]; |
046 | k=k-lowbit(k); |
047 | } |
048 | return sum; |
049 | } |
050 |
051 | private void update( int i, int x){ //增加某个元素的大小,给某个节点 i 加上 x |
052 | while (i<=maxn){ |
053 | cal[i]=cal[i]+x; //更新父节点 |
054 | i=i+lowbit(i); |
055 | } |
056 | } |
061 | public static void main(String args[]) throws IOException{ |
062 | Main ma= new Main(); |
063 | ma.go(); |
064 | } |
066 | public void go() throws IOException{ |
067 | |
068 | StreamTokenizer st = new StreamTokenizer( new BufferedReader( |
069 | new InputStreamReader(System.in))); |
070 | PrintWriter out = new PrintWriter( new OutputStreamWriter(System.out)); |
071 |
072 | while ( true ) { |
073 | st.nextToken(); |
074 | int n= ( int ) st.nval; //牛的个数 |
075 | if (n== 0 ) break ; |
076 |
077 | cow= new TNode[N]; |
078 | cal= new int [N]; |
079 | res= new int [N]; |
080 | for ( int i= 0 ;i< N;i++){ |
081 | cow[i]= new TNode(); |
082 | // cal[i]=0; |
083 | } |
084 | for ( int i= 0 ;i< n;i++) { //读入牛的吃草区间 |
085 | st.nextToken(); |
086 | cow[i].s=( int ) st.nval; |
087 | st.nextToken(); |
088 | cow[i].e=( int ) st.nval; |
089 | cow[i].s++; |
090 | cow[i].e++; |
091 | cow[i].label=i; //牛的原始序号 |
092 | if (cow[i].e>maxn) maxn=cow[i].e; //最大右端点 |
093 | } |
094 | |
095 | Arrays.sort(cow); //排序 |
096 |
097 | // for(int i=0;i< n;i++) |
098 | // System.out.println(cow[i]); |
099 | |
100 | for ( int i= 0 ;i< n;i++) { |
101 | if (i!= 0 &&cow[i].s==cow[i- 1 ].s&&cow[i].e==cow[i- 1 ].e) //两头牛有相同的吃草区间 |
102 | res[cow[i].label]=res[cow[i- 1 ].label]; //它们有相同的答案 |
103 | else res[cow[i].label]=Sum(cow[i].s); //统计比cow[i].label这头牛强的牛的数目 |
104 | update(cow[i].s, 1 ); //更新 |
105 | } |
106 | System.out.printf( "%d" ,res[ 0 ]); |
107 | for ( int i= 1 ;i< n;i++) System.out.printf( " %d" ,res[i]); |
108 | System.out.println(); |
109 | } |
110 | } |