Count Inversions of size three in a give array - GeeksforGeeks
Given an array arr[] of size n. Three elements arr[i], arr[j] and arr[k] form an inversion of size 3 if a[i] > a[j] >a[k] and i < j < k. Find total number of inversions of size 3.
Read full article from Count Inversions of size three in a give array - GeeksforGeeks
Given an array arr[] of size n. Three elements arr[i], arr[j] and arr[k] form an inversion of size 3 if a[i] > a[j] >a[k] and i < j < k. Find total number of inversions of size 3.
Input: {8, 4, 2, 1} Output: 4 The four inversions are (8,4,2), (8,4,1), (4,2,1) and (8,2,1). Input: {9, 6, 4, 5, 8} Output: 2 The two inversions are {9, 6, 4} and {9, 6, 5}
Binary Indexed Tree Approach :
Like inversions of size 2, we can use Binary indexed tree to find inversions of size 3. It is strongly recommended to refer below article first.
Like inversions of size 2, we can use Binary indexed tree to find inversions of size 3. It is strongly recommended to refer below article first.
The idea is similar to above method. We count the number of greater elements and smaller elements for all the elements and then multiply greater[] to smaller[] and add it to the result.
Solution :
- To find out the number of smaller elements for an index we iterate from n-1 to 0. For every element a[i] we calculate the getSum() function for (a[i]-1) which gives the number of elements till a[i]-1.
- To find out the number of greater elements for an index we iterate from 0 to n-1. For every element a[i] we calculate the sum of numbers till a[i] (sum smaller or equal to a[i]) by getSum() and subtract it from i (as i is the total number of element till that point) so that we can get number of elements greater than a[i].
Like we did for inversions of size 2, here also we convert the input array to an array with values from 1 to n so that the size of BIT remains O(n), and getSum() and update() functions take O(Log n) time. For example, we convert arr[] = {7, -90, 100, 1} to arr[] = {3, 1, 4 ,2 }.
class
BinaryTree {
// Returns sum of arr[0..index]. This function assumes
// that the array is preprocessed and partial sums of
// array elements are stored in BITree[].
int
getSum(
int
BITree[],
int
index) {
int
sum =
0
;
// Initialize result
// Traverse ancestors of BITree[index]
while
(index >
0
) {
// Add current element of BITree to sum
sum += BITree[index];
// Move index to parent node in getSum View
index -= index & (-index);
}
return
sum;
}
// Updates a node in Binary Index Tree (BITree) at given index
// in BITree. The given value 'val' is added to BITree[i] and
// all of its ancestors in tree.
void
updateBIT(
int
BITree[],
int
n,
int
index,
int
val) {
// Traverse all ancestors and add 'val'
while
(index <= n) {
// Add 'val' to current node of BI Tree
BITree[index] += val;
// Update index to that of parent in update View
index += index & (-index);
}
}
// Converts an array to an array with values from 1 to n
// and relative order of smaller and greater elements remains
// same. For example, {7, -90, 100, 1} is converted to
// {3, 1, 4 ,2 }
void
convert(
int
arr[],
int
n) {
// Create a copy of arrp[] in temp and sort the temp array
// in increasing order
int
temp[]=
new
int
[n];
for
(
int
i =
0
; i < n; i++) {
temp[i] = arr[i];
}
Arrays.sort(temp);
// Traverse all array elements
for
(
int
i =
0
; i < n; i++) {
// lower_bound() Returns pointer to the first element
// greater than or equal to arr[i]
arr[i] = Arrays.binarySearch(temp, arr[i]) +
1
;
}
}
// Returns count of inversions of size three
int
getInvCount(
int
arr[],
int
n) {
// Convert arr[] to an array with values from 1 to n and
// relative order of smaller and greater elements remains
// same. For example, {7, -90, 100, 1} is converted to
// {3, 1, 4 ,2 }
convert(arr, n);
// Create and initialize smaller and greater arrays
int
greater1[]=
new
int
[n];
int
smaller1[]=
new
int
[n];
for
(
int
i =
0
; i < n; i++) {
greater1[i] = smaller1[i] =
0
;
}
// Create and initialize an array to store Binary
// Indexed Tree
int
BIT[]=
new
int
[n+
1
];
for
(
int
i =
1
; i <= n; i++) {
BIT[i] =
0
;
}
for
(
int
i = n -
1
; i >=
0
; i--) {
smaller1[i] = getSum(BIT, arr[i] -
1
);
updateBIT(BIT, n, arr[i],
1
);
}
// Reset BIT
for
(
int
i =
1
; i <= n; i++) {
BIT[i] =
0
;
}
// Count greater elements
for
(
int
i =
0
; i < n; i++) {
greater1[i] = i - getSum(BIT, arr[i]);
updateBIT(BIT, n, arr[i],
1
);
}
// Compute Inversion count using smaller[] and
// greater[].
int
invcount =
0
;
for
(
int
i =
0
; i < n; i++) {
invcount += smaller1[i] * greater1[i];
}
return
invcount;
}
// Driver program to test above function
public
static
void
main(String args[]) {
BinaryTree tree =
new
BinaryTree();
int
[] arr =
new
int
[]{
8
,
4
,
2
,
1
};
int
n = arr.length;
System.out.print(
"Inversion Count : "
+
tree.getInvCount(arr, n));
}
}
Time Complexity : O(n log n)
Auxiliary Space : O(n)
Auxiliary Space : O(n)
We can also use Self-Balancing Binary Search Tree to count greater elements on left and smaller on right. Time complexity of this method would also be O(n Log n), But BIT based method is easy to implement.
Better Approach : Time Complexity of this approach : O(n^2)
We can reduce the complexity if we consider every element arr[i] as middle element of inversion, find all the numbers greater than a[i] whose index is less than i, find all the numbers which are smaller than a[i] and index is more than i. We multiply the number of elements greater than a[i] to the number of elements smaller than a[i] and add it to the result.
int
getInvCount(
int
arr[],
int
n)
{
int
invcount =
0
;
// initialize result
for
(
int
i=
0
; i< n-
1
; i++)
{
// count all smaller elements on right of arr[i]
int
small=
0
;
for
(
int
j=i+
1
; j<n; j++)
if
(arr[i] > arr[j])
small++;
// count all greater elements on left of arr[i]
int
great =
0
;
for
(
int
j=i-
1
; j>=
0
; j--)
if
(arr[i] < arr[j])
great++;
// update inversion count by adding all inversions
// that have arr[i] as middle of three elements
invcount += great*small;
}
return
invcount;
}
Simple approach :- Loop for all possible value of i, j and k and check for the condition a[i] > a[j] > a[k] and i < j < k.
// returns count of inversion of size 3
int
getInvCount(
int
arr[],
int
n)
{
int
invcount =
0
;
// initialize result
for
(
int
i=
0
; i< n-
2
; i++)
{
for
(
int
j=i+
1
; j<n-
1
; j++)
{
if
(arr[i] > arr[j])
{
for
(
int
k=j+
1
; k<n; k++)
{
if
(arr[j] > arr[k])
invcount++;
}
}
}
}
return
invcount;
}