Leetcode 304 - Range Sum Query 2D - Immutable


LeetCode - 308 Range Sum Query 2D - Mutable
leetcode Range Sum Query 2D - Immutable - 细语呢喃
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).
Range Sum Query 2D
The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.
Example:
Given matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12
Note:
  1. You may assume that the matrix does not change.
  2. There are many calls to sumRegion function.
  3. You may assume that row1 ≤ row2 and col1 ≤ col2

https://leetcode.com/problems/range-sum-query-2d-immutable/solution/
Approach #4 (Caching Smarter) [Accepted]
We used a cumulative sum array in the 1D version. We notice that the cumulative sum is computed with respect to the origin at index 0. Extending this analogy to the 2D case, we could pre-compute a cumulative region sum with respect to the origin at (0, 0).
  • Time complexity : O(1) time per query, O(mn) time pre-computation. The pre-computation in the constructor takes O(mn) time. Each sumRegion query takes O(1) time.
  • Space complexity : O(mn). The algorithm uses O(mn) space to store the cumulative region sum.
Sum OD
Sum(OD) is the cumulative region sum with respect to the origin at (0, 0).
How do we derive Sum(ABCD) using the pre-computed cumulative region sum?
Sum OB
Sum(OB) is the cumulative region sum on top of the rectangle.
Sum OC
Sum(OC) is the cumulative region sum to the left of the rectangle.
Sum OA
Sum(OA) is the cumulative region sum to the top left corner of the rectangle.
Note that the region Sum(OA) is covered twice by both Sum(OB) and Sum(OC). We could use the principle of inclusion-exclusion to calculate Sum(ABCD) as following:
Sum(ABCD) = Sum(OD) - Sum(OB) - Sum(OC) + Sum(OA)

  • Time complexity : O(1) time per query, O(mn) time pre-computation. The pre-computation in the constructor takes O(mn) time. Each sumRegion query takes O(1) time.
  • Space complexity : O(mn). The algorithm uses O(mn) space to store the cumulative region sum
Extra row and colum

private int[][] dp;

public NumMatrix(int[][] matrix) {
    if (matrix.length == 0 || matrix[0].length == 0) return;
    dp = new int[matrix.length + 1][matrix[0].length + 1];
    for (int r = 0; r < matrix.length; r++) {
        for (int c = 0; c < matrix[0].length; c++) {
            dp[r + 1][c + 1] = dp[r + 1][c] + dp[r][c + 1] + matrix[r][c] - dp[r][c];
        }
    }
}

public int sumRegion(int row1, int col1, int row2, int col2) {
    return dp[row2 + 1][col2 + 1] - dp[row1][col2 + 1] - dp[row2 + 1][col1] + dp[row1][col1];
}

Approach #3 (Caching Rows) [Accepted]
Remember from the 1D version where we used a cumulative sum array? Could we apply that directly to solve this 2D version?
Algorithm
Try to see the 2D matrix as m rows of 1D arrays. To find the region sum, we just accumulate the sum in the region row by row.
  • Time complexity : O(m) time per query, O(mn) time pre-computation. The pre-computation in the constructor takes O(mn) time. The sumRegion query takes O(m) time.
  • Space complexity : O(mn). The algorithm uses O(mn) space to store the cumulative sum of all rows.
private int[][] dp;

public NumMatrix(int[][] matrix) {
    if (matrix.length == 0 || matrix[0].length == 0) return;
    dp = new int[matrix.length][matrix[0].length + 1];
    for (int r = 0; r < matrix.length; r++) {
        for (int c = 0; c < matrix[0].length; c++) {
            dp[r][c + 1] = dp[r][c] + matrix[r][c];
        }
    }
}

public int sumRegion(int row1, int col1, int row2, int col2) {
    int sum = 0;
    for (int row = row1; row <= row2; row++) {
        sum += dp[row][col2 + 1] - dp[row][col1];
    }
    return sum;
}


Approach #2 (Caching) [Memory Limit Exceeded]
Since sumRegion could be called many times, we definitely need to do some pre-processing.
Algorithm
We could trade in extra space for speed by pre-calculating all possible rectangular region sum and store them in a hash table. Each sumRegion query now takes only constant time complexity.
Complexity analysis
  • Time complexity : O(1) time per query, O(m^2n^2) time pre-computation. Each sumRegion query takes O(1) time as the hash table lookup's time complexity is constant. The pre-computation will take O(m^2n^2) time as there are a total of m^2 \times n^2 possibilities need to be cached.
  • Space complexity : O(m^2n^2). Since there are mn different possibilities for both top left and bottom right points of the rectangular region, the extra space required is O(m^2n^2).

https://leetcode.com/discuss/69048/java-o-m-n-init-o-1-query-solution
private int[][] sums; public NumMatrix(int[][] matrix) { int m = matrix.length; if (m == 0) return; int n = matrix[0].length; sums = new int[m + 1][n + 1]; for (int i = 0; i < m; ++i) { int sumRow = 0; for (int j = 0; j < n; ++j) { sumRow += matrix[i][j]; sums[i + 1][j + 1] = sums[i][j + 1] + sumRow; } } } public int sumRegion(int row1, int col1, int row2, int col2) { return sums[row2 + 1][col2 + 1] - sums[row1][col2 + 1] - sums[row2 + 1][col1] + sums[row1][col1]; }

http://likemyblogger.blogspot.com/2015/11/leetcode-304-range-sum-query-2d.html
    vector<vector<int>> mt;
public:
    NumMatrix(vector<vector<int>> &matrix) {
        int m = matrix.size();
        if(m==0) return;
        int n = matrix[0].size();
        if(n==0) return;
        mt.resize(m+1, vector<int>(n+1, 0));
        for(int i=1; i<=m; ++i){
            for(int j=1; j<=n; ++j){
                mt[i][j] += matrix[i-1][j-1] + mt[i-1][j] + mt[i][j-1] - mt[i-1][j-1];
            }
        }
    }
    int sumRegion(int row1, int col1, int row2, int col2) {
        return mt[row2+1][col2+1] - mt[row2+1][col1] - mt[row1][col2+1] + mt[row1][col1];
    }

https://www.zybuluo.com/Yano/note/320394
  1. public long[][] sumMatrix;
  2. public NumMatrix(int[][] matrix) {
  3. if (matrix == null || matrix.length == 0) {
  4. return;
  5. }
  6. sumMatrix = new long[matrix.length + 1][matrix[0].length + 1];
  7. for (int i = 0; i < matrix.length; i++) {
  8. for (int j = 0; j < matrix[0].length; j++) {
  9. sumMatrix[i][j + 1] = sumMatrix[i][j] + matrix[i][j];
  10. }
  11. }
  12. }
  13. public int sumRegion(int row1, int col1, int row2, int col2) {
  14. if (sumMatrix == null || row1 < 0 || row2 < 0 || col1 < 0
  15. || col2 < 0 || row1 >= sumMatrix.length - 1
  16. || row2 >= sumMatrix.length - 1
  17. || col1 >= sumMatrix[0].length - 1
  18. || col2 >= sumMatrix[0].length - 1 || row1 > row2
  19. || col1 > col2) {
  20. return Integer.MIN_VALUE;
  21. }
  22. long rt = 0;
  23. for (int i = row1; i <= row2; i++) {
  24. rt += sumMatrix[i][col2 + 1] - sumMatrix[i][col1];
  25. }
  26. return (int) rt;
  27. }
X. https://www.programcreek.com/2014/04/leetcode-range-sum-query-2d-immutable-java/
public class NumMatrix {
    int [][] sum;
 
    public NumMatrix(int[][] matrix) {
        if(matrix==null || matrix.length==0||matrix[0].length==0)
            return;
 
        int m = matrix.length;
        int n = matrix[0].length;
        sum = new int[m][n];
 
        for(int i=0; i<m; i++){
            int sumRow=0;
            for(int j=0; j<n; j++){
                if(i==0){
                    sumRow += matrix[i][j];
                    sum[i][j]=sumRow;
                }else{
                    sumRow += matrix[i][j];
                    sum[i][j]=sumRow+sum[i-1][j];
                }
 
            }
        }
    }
 
    public int sumRegion(int row1, int col1, int row2, int col2) {
        if(this.sum==null) 
            return 0;
 
        int topRightX = row1;
        int topRightY = col2;
 
        int bottomLeftX=row2;
        int bottomLeftY= col1;
 
        int result=0;
 
        if(row1==0 && col1==0){
            result = sum[row2][col2];
        }else if(row1==0){
            result = sum[row2][col2]
                    -sum[bottomLeftX][bottomLeftY-1];
 
        }else if(col1==0){
            result = sum[row2][col2]
                    -sum[topRightX-1][topRightY];
        }else{
            result = sum[row2][col2]
                    -sum[topRightX-1][topRightY]
                    -sum[bottomLeftX][bottomLeftY-1]
                    +sum[row1-1][col1-1];
        }
 
        return result;
    }
https://github.com/mintycc/OnlineJudge-Solutions/blob/master/Leetcode/304_Range_Sum_Query_2D_Immutable.java
要求是组数很⼤大不不能放⼊入内存。然后给的函数输⼊入很奇怪 是以矩形最左
下⻆角元素作为坐标原点设定⼀一个坐标轴,矩形位于第⼆二象限,然后给的是
两个点坐标,分别代表矩形左下⻆角那个点和右上⻆角那个点。
10月29 full time fb面经
屋溜零 一开始array都是正数,follow up是有负数  因为一开始就是按照有负数写的,所以直接过了

叁零寺  要求是组数很大不能放入内存   然后给的函数输入很奇怪 是以矩形最左下角元素作为坐标原点设定一个坐标轴,矩形位于第二象限,. From 1point 3acres bbs
然后给的是两个点坐标,分别代表矩形左下角那个点和右上角那个点。


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts