Ternary Search Tree 三元搜索树 | GeeksforGeeks


A ternary search tree is a special trie data structure where the child nodes of a standard trie are ordered as a binary search tree.

Unlike trie(standard) data structure where each node contains 26 pointers for its children(some pointers are empty), each node in a ternary search tree contains only 3 pointers:

1. The left pointer points to the node whose value is less than the value in the current node.
2. The equal pointer points to the node whose value is equal to the value in the current node.
3. The right pointer points to the node whose value is greater than the value in the current node.


An Example Ternary Search Trie with strings [abc, abs, awe, and].

One of the advantage of using ternary search trees over tries is that ternary search trees are a more space efficient (involve only three pointers per node as compared to 26 in standard tries). Further, ternary search trees can be used any time a hashtable would be used to store strings.
Tries are suitable when there is a proper distribution of words over the alphabets so that spaces are utilized most efficiently. Otherwise ternary search trees are better. Ternary search trees are efficient to use(in terms of space) when the strings to be stored share a common prefix.
Ternary search trees are efficient for queries like “Given a word, find the next word in dictionary(near-neighbor lookups)” 

Application:
Given a word, find the next word in dictionary(near-neighbor lookups)
2. Used in spell checks: Ternary search trees can be used as a dictionary to store all the words. Once the word is typed in an editor, the word can be parallely searched in the ternary search tree to check for correct spelling.

2. Used in spell checks: Ternary search trees can be used as a dictionary to store all the words. Once the word is typed in an editor, the word can be parallely searched in the ternary search tree to check for correct spelling.
struct Node
{
    char data;
 
    // True if this character is last character of one of the words
    unsigned isEndOfString: 1;
 
    struct Node *left, *eq, *right;
};
 
// A utility function to create a new ternary search tree node
struct Node* newNode(char data)
{
    struct Node* temp = (struct Node*) malloc(sizeof( struct Node ));
    temp->data = data;
    temp->isEndOfString = 0;
    temp->left = temp->eq = temp->right = NULL;
    return temp;
}
 
// Function to insert a new word in a Ternary Search Tree
void insert(struct Node** root, char *word)
{
    // Base Case: Tree is empty
    if (!(*root))
        *root = newNode(*word);
 
    // If current character of word is smaller than root's character,
    // then insert this word in left subtree of root
    if ((*word) < (*root)->data)
        insert(&( (*root)->left ), word);
 
    // If current character of word is greate than root's character,
    // then insert this word in right subtree of root
    else if ((*word) > (*root)->data)
        insert(&( (*root)->right ), word);
 
    // If current character of word is same as root's character,
    else
    {
        if (*(word+1))
            insert(&( (*root)->eq ), word+1);
 
        // the last character of the word
        else
            (*root)->isEndOfString = 1;
    }
}
 
// A recursive function to traverse Ternary Search Tree
void traverseTSTUtil(struct Node* root, char* buffer, int depth)
{
    if (root)
    {
        // First traverse the left subtree
        traverseTSTUtil(root->left, buffer, depth);
 
        // Store the character of this node
        buffer[depth] = root->data;
        if (root->isEndOfString)
        {
            buffer[depth+1] = '\0';
            printf( "%s\n", buffer);
        }
 
        // Traverse the subtree using equal pointer (middle subtree)
        traverseTSTUtil(root->eq, buffer, depth + 1);
 
        // Finally Traverse the right subtree
        traverseTSTUtil(root->right, buffer, depth);
    }
}
 
// The main function to traverse a Ternary Search Tree.
// It mainly uses traverseTSTUtil()
void traverseTST(struct Node* root)
{
    char buffer[MAX];
    traverseTSTUtil(root, buffer, 0);
}
 
// Function to search a given word in TST
int searchTST(struct Node *root, char *word)
{
    if (!root)
        return 0;
 
    if (*word < (root)->data)
        return searchTST(root->left, word);
 
    else if (*word > (root)->data)
        return searchTST(root->right, word);
 
    else
    {
        if (*(word+1) == '\0')
            return root->isEndOfString;
 
        return searchTST(root->eq, word+1);
    }

}
Java code http://algs4.cs.princeton.edu/52trie/TST.java.html
    private Node get(Node x, String key, int d) {
        if (key == null) throw new NullPointerException();
        if (key.length() == 0) throw new IllegalArgumentException("key must have length >= 1");
        if (x == null) return null;
        char c = key.charAt(d);
        if      (c < x.c)              return get(x.left,  key, d);
        else if (c > x.c)              return get(x.right, key, d);
        else if (d < key.length() - 1) return get(x.mid,   key, d+1);
        else                           return x;
    }
    private Node put(Node x, String s, Value val, int d) {
        char c = s.charAt(d);
        if (x == null) {
            x = new Node();
            x.c = c;
        }
        if      (c < x.c)             x.left  = put(x.left,  s, val, d);
        else if (c > x.c)             x.right = put(x.right, s, val, d);
        else if (d < s.length() - 1)  x.mid   = put(x.mid,   s, val, d+1);
        else                          x.val   = val;
        return x;
    }

http://www.codebytes.in/2015/12/ternary-search-tries-tst-java.html
https://leetcode.com/discuss/36893/ternary-search-trie-implementation-with-java
TST is one of the most common way to implement Trie. Also, R-way needs you to specify the number of children based on different problems, while in TST there are always 3 of them.
class TrieNode { char val; TrieNode left, mid, right; boolean end; } public class Trie { private TrieNode root; public Trie() { root = new TrieNode(); } // Inserts a word into the trie. public void insert(String word) { if (word != null && !word.isEmpty()) insert(word, 0, root); } private TrieNode insert(String word, int index, TrieNode node) { char ch = word.charAt(index); if (node == null) node = new TrieNode(ch); if (ch < node.val) node.left = insert(word, index, node.left); else if (ch > node.val) node.right = insert(word, index, node.right); else if (index < word.length() - 1) node.mid = insert(word, index + 1, node.mid); else node.end = true; return node; } // Returns if the word is in the trie. public boolean search(String word) { if (word == null || word.isEmpty()) return false; return search(word, 0, root); } private boolean search(String word, int index, TrieNode node) { if (node == null) return false; char ch = word.charAt(index); if (ch < node.val) return search(word, index, node.left); if (ch > node.val) return search(word, index, node.right); if (index < word.length() - 1) return search(word, index + 1, node.mid); return node.end; } // Returns if there is any word in the trie // that starts with the given prefix. public boolean startsWith(String prefix) { if (prefix == null || prefix.isEmpty()) return false; return startsWith(prefix, 0, root); } private boolean startsWith(String prefix, int index, TrieNode node) { if (node == null) return false; char ch = prefix.charAt(index); if (ch < node.val) return startsWith(prefix, index, node.left); if (ch > node.val) return startsWith(prefix, index, node.right); if (index == prefix.length() - 1) return true; return startsWith(prefix, index + 1, node.mid); } }
http://hackthology.com/ternary-search-tries-for-fast-flexible-string-search-part-1.html
Usually an R-Way or Multi-Way Trie has a fanout equal to the numbers of characters in the character set or the number of bits in a machine word, half word or byte. So in practice a node in an R-Way Trie might have 256 children or perhaps 2\^16 children. As the fanout (the number of children per node) increases the space efficiency of the Trie decreases. However, the search speed increases. A classic time/space trace off. 
Also check http://en.wikipedia.org/wiki/Ternary_search_tree
http://lukaszwrobel.pl/blog/ternary-search-tree
Read full article from Ternary Search Tree | GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts