LeetCode 572 - Subtree of Another Tree


https://leetcode.com/problems/subtree-of-another-tree
Given two non-empty binary trees s and t, check whether tree t has exactly the same structure and node values with a subtree of s. A subtree of s is a tree consists of a node in s and all of this node's descendants. The tree s could also be considered as a subtree of itself.
Example 1:
Given tree s:
     3
    / \
   4   5
  / \
 1   2
Given tree t:
   4 
  / \
 1   2
Return true, because t has the same structure and node values with a subtree of s.
Example 2:
Given tree s:
     3
    / \
   4   5
  / \
 1   2
    /
   0
Given tree t:
   4
  / \
 1   2
Return false.
X.
http://www.voidcn.com/article/p-ptciosva-p.html
 public boolean isSubtree(TreeNode s, TreeNode t) {
  StringBuilder sbd1 = new StringBuilder();
  StringBuilder sbd2 = new StringBuilder();
  preOrder(sbd1, s);
  preOrder(sbd2, t);
  return sbd1.toString().contains(sbd2);
 }

 private void preOrder(StringBuilder sbd, TreeNode t) {
  if(t == null) {
   sbd.append(",,");
   return;
  }  
  sbd.append(",").append(t.val);
  preOrder(sbd, t.left);
  preOrder(sbd, t.right);
 }

https://leetcode.com/articles/subtree-of-another-tree/
We can find the preorder traversal of the given tree s and t, given by, say s_{preorder} and t_{preorder}respectively(represented in the form of a string). Now, we can check if t_{preorder} is a substring of s_{preorder}.
But, in order to use this approach, we need to treat the given tree in a different manner. Rather than assuming a null value for the childern of the leaf nodes, we need to treat the left and right child as a lnulland rnull value respectively. This is done to ensure that the t_{preorder} doesn't become a substring of s_{preorder} even in cases when t isn't a subtree of s.
You can also note that we've added a '#' before every considering every value. If this isn't done, the trees of the form s:[23, 4, 5] and t:[3, 4, 5] will also give a true result since the preorder string of the t("23 4 lnull rull 5 lnull rnull") will be a substring of the preorder string of s("3 4 lnull rull 5 lnull rnull"). Adding a '#' before the node's value solves this problem.

Preorder_null
Preorder_lnull_rnull

  HashSet<String> trees = new HashSet<>();

  public boolean isSubtree(TreeNode s, TreeNode t) {
    String tree1 = preorder(s, true);
    String tree2 = preorder(t, true);
    return tree1.indexOf(tree2) >= 0;
  }

  public String preorder(TreeNode t, boolean left) {
    if (t == null) {
      if (left)
        return "lnull";
      else
        return "rnull";
    }
    return "#" + t.val + " " + preorder(t.left, true) + " " + preorder(t.right, false);

  }

  • Time complexity : O(m^2+n^2+m*n). A total of n nodes of the tree s and m nodes of tree t are traversed. Assuming string concatenation takes O(k) time for strings of length k and indexOf takes O(m*n).
  • Space complexity : O(max(m,n)). The depth of the recursion tree can go upto n for tree t and mfor tree s in worst case.
https://leetcode.com/articles/subtree-of-another-tree/
We can find the preorder traversal of the given tree s and t, given by, say s_{preorder} and t_{preorder} respectively(represented in the form of a string). Now, we can check if t_{preorder} is a substring of s_{preorder}.
But, in order to use this approach, we need to treat the given tree in a different manner. Rather than assuming a null value for the childern of the leaf nodes, we need to treat the left and right child as a lnull and rnull value respectively. This is done to ensure that the t_{preorder} doesn't become a substring of s_{preorder} even in cases when t isn't a subtree of s.
You can also note that we've added a '#' before every considering every value. If this isn't done, the trees of the form s:[23, 4, 5] and t:[3, 4, 5] will also give a true result since the preorder string of the t("23 4 lnull rull 5 lnull rnull") will be a substring of the preorder string of s("3 4 lnull rull 5 lnull rnull"). Adding a '#' before the node's value solves this problem.
    HashSet < String > trees = new HashSet < > ();
    public boolean isSubtree(TreeNode s, TreeNode t) {
        String tree1 = preorder(s, true);
        String tree2 = preorder(t, true);
        return tree1.indexOf(tree2) >= 0;
    }
    public String preorder(TreeNode t, boolean left) {
        if (t == null) {
            if (left)
                return "lnull";
            else
                return "rnull";
        }
        return "#"+t.val + " " +preorder(t.left, true)+" " +preorder(t.right, false);
    }
http://blog.csdn.net/fuxuemingzhu/article/details/71440802
StringBuilder spre = new StringBuilder(); StringBuilder tpre = new StringBuilder(); public boolean isSubtree(TreeNode s, TreeNode t) { preOrder(s, spre.append(",")); preOrder(t, tpre.append(",")); return spre.toString().contains(tpre.toString()); } public void preOrder(TreeNode root, StringBuilder str){ if(root == null){ str.append("#,"); return; } str.append(root.val).append(","); preOrder(root.left, str); preOrder(root.right, str); }

https://discuss.leetcode.com/topic/88700/easy-o-n-java-solution-using-inorder-and-preorder-traversal
 public boolean isSubtree(TreeNode s, TreeNode t) {
        String spreorder = generatepreorderString(s); 
        String tpreorder = generatepreorderString(t);
        
        return spreorder.contains(tpreorder) ;
    }
    public String generatepreorderString(TreeNode s){
        StringBuilder sb = new StringBuilder();
        Stack<TreeNode> stacktree = new Stack();
        stacktree.push(s);
        while(!stacktree.isEmpty()){
           TreeNode popelem = stacktree.pop();
           if(popelem==null)
              sb.append(",#"); // Appending # inorder to handle same values but not subtree cases
           else      
              sb.append(","+popelem.val);
           if(popelem!=null){
                stacktree.push(popelem.right);    
                stacktree.push(popelem.left);  
           }
        }
        return sb.toString();
    }
I don't think your code is guaranteed to be "O(n)." The String.contains() function in Java could be O(ST), where S and T are the sizes of two trees, or the sizes of two strings you generate (up to a multiplicative factor because of delimiters). Here's a reference:
http://stackoverflow.com/questions/4089558/what-is-the-big-o-of-string-contains-in-java

One of the best known algorithms is the Boyer-Moore string searching algorithm which is O(n) although it can give sublinear performance in the best case.
Which algorithm is used in Java depends on which implemetation you download. It seems that for example OpenJDK uses a naive algorithm that runs in O(nm) and linear performance in the best case. 
https://discuss.leetcode.com/topic/88491/java-concise-o-n-m-time-o-n-m-space
public boolean isSubtree(TreeNode s, TreeNode t) {
    return serialize(s).contains(serialize(t)); // Java use a naive contains algorithm so to ensure linear time, 
                                                // replace with KMP algorithm
}

public String serialize(TreeNode root) {
    StringBuilder res = new StringBuilder();
    serialize(root, res);
    return res.toString();
}

private void serialize(TreeNode cur, StringBuilder res) {
    if (cur == null) {res.append(",#"); return;}
    res.append("," + cur.val);
    serialize(cur.left, res);
    serialize(cur.right, res);
}
X.
Instead of creating an inorder traversal, we can treat every node of the given tree t as the root, treat it as a subtree and compare the corresponding subtree with the given subtree s for equality. For checking the equality, we can compare the all the nodes of the two subtrees.
For doing this, we make use a function traverse(s,t) which traverses over the given tree s and treats every node as the root of the subtree currently being considered. It also checks the two subtrees currently being considered for their equality. In order to check the equality of the two subtrees, we make use of equals(x,y) function, which takes x and y, which are the roots of the two subtrees to be compared as the inputs and returns True or False depending on whether the two are equal or not. It compares all the nodes of the two subtrees for equality. Firstly, it checks whether the roots of the two trees for equality and then calls itself recursively for the left subtree and the right subtree.
  • Time complexity : O(m*n). In worst case(skewed tree) traverse function takes O(m*n) time.
https://discuss.leetcode.com/topic/88508/java-solution-tree-traversal
Because isSame method takes O(n) time and O(n) space. So the time complexity should be O(n ^ 2).
For each node during pre-order traversal of s, use a recursive function isSame to validate if sub-tree started with this node is the same with t.
    public boolean isSubtree(TreeNode s, TreeNode t) {
        if (s == null) return false;
        if (isSame(s, t)) return true;
        return isSubtree(s.left, t) || isSubtree(s.right, t);
    }
    
    private boolean isSame(TreeNode s, TreeNode t) {
        if (s == null && t == null) return true;
        if (s == null || t == null) return false;
        
        if (s.val != t.val) return false;
        
        return isSame(s.left, t.left) && isSame(s.right, t.right);
    }
X. https://leetcode.com/problems/subtree-of-another-tree/discuss/102755/Java-Solution-postorder-traversal-without-using-contains-O(N)
    public boolean isSubtree(TreeNode s, TreeNode t) {
        String tStr = getPostOrderString(t);
        return validateSubtree(s, tStr).find;
    }
    
    private String getPostOrderString(TreeNode root) {
        if(root==null) return "#";
        else {
            return getPostOrderString(root.left)+ "," +getPostOrderString(root.right) + "," + root.val;
        }
    }
    
    private State validateSubtree(TreeNode s, String tStr) {
        if(s==null) {
            boolean find = tStr.equals("#");
            return new State("#", find);
        }
        State left = validateSubtree(s.left, tStr);
        State right = validateSubtree(s.right, tStr);
        String str = left.str+","+right.str+","+s.val;
        boolean find = tStr.equals(str)||left.find||right.find;
        return new State(str, find);
    }
}

class State {
    String str;
    boolean find;
    public State(String str, boolean find) {
        this.str = str;
        this.find = find;
    }
X. https://shineboy2013.github.io/2018/01/29/lee-572/
如果s是BST,怎么改进算法?
二分法先找到s的节点值等于t根节点值的节点再比较。时间复杂度为O(logn+m)
1
2
3
4
5
6
7
8
9
10
11
public boolean contains(TreeNode t, TreeNode node) {
 if (node == null)
  return false;
 int result = t.compareTo(node.val);
 if (result > 0)
  return contains(t, node.right);
 else if (result < 0)
  return contains(t, node.left);
 else
  return true;
}
若BST不是严格递增 (allow duplicates),多比较几个相等节点即可。


The complexity of Java's implementation of indexOf is O(m*n) where n and m are the length of the search string and pattern respectively.

What you can do to improve complexity is to use e.g., the Boyer-More algorithm to intelligently skip comparing logical parts of the string which cannot match the pattern.

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts