Count binary strings with k times appearing adjacent two set bits - GeeksforGeeks


Count binary strings with k times appearing adjacent two set bits - GeeksforGeeks
Given two integers n and k, count the number of binary strings of length n with k as number of times adjacent 1's appear.

Input  : n = 5, k = 2
Output : 6
Explanation:
Binary strings of length 5 in which k number of times
two adjacent set bits appear.
00111  
01110
11100
11011
10111
11101
Lets try writing the recursive function for the above problem statement:
1) n = 1, only two binary strings exist with length 1, not having any adjacent 1’s
      String 1 : “0”
      String 2 : “1”
2) For all n > 1 and all k, two cases arise
      a) Strings ending with 0 : String of length n can be created by appending 0 to all strings of length n-1 having k times two adjacent 1’s ending with both 0 and 1 (Having 0 at n’th position will not change the count of adjacent 1’s).
      b) Strings ending with 1 : String of length n can be created by appending 1 to all strings of length n-1 having k times adjacent 1’s and ending with 0 and to all strings of length n-1 having k-1 adjacent 1’s and ending with 1.
Time Complexity : O(n2)
Example: let s = 011 i.e. a string ending with 1 having adjacent count as 1. Adding 1 to it, s = 0111 increase the count of adjacent 1.
Let there be an array dp[i][j][2] where dp[i][j][0]
denotes number of binary strings with length i having
j number of two adjacent 1's and ending with 0.
Similarly dp[i][j][1] denotes the same binary strings
with length i and j adjacent 1's but ending with 1.
Then: 
    dp[1][0][0] = 1 and dp[1][0][1] = 1
    For all other i and j,
        dp[i][j][0] = dp[i-1][j][0] + dp[i-1][j][1]
        dp[i][j][1] = dp[i-1][j][0] + dp[i-1][j-1][1]

Then, output dp[n][k][0] + dp[n][k][1]
int countStrings(int n, int k)
{
    // dp[i][j][0] stores count of binary
    // strings of length i with j consecutive
    // 1's and ending at 0.
    // dp[i][j][1] stores count of binary
    // strings of length i with j consecutive
    // 1's and ending at 1.
    int dp[n+1][k+1][2];
    memset(dp, 0, sizeof(dp));
    // If n = 1 and k = 0.
    dp[1][0][0] = 1;
    dp[1][0][1] = 1;
    for (int i=2; i<=n; i++)
    {
        // number of adjacent 1's can not exceed i-1
        for (int j=0; j<i; j++)
        {
            dp[i][j][0] = dp[i-1][j][0] + dp[i-1][j][1];
            dp[i][j][1] = dp[i-1][j][0];
            if (j-1 >= 0)
                dp[i][j][1] += dp[i-1][j-1][1];
        }
    }
    return dp[n][k][0] + dp[n][k][1];
}

https://www.geeksforgeeks.org/number-of-binary-strings-of-length-n-with-k-adjacent-set-bits/
// Function to find the number of Bit Strings
// of length N with K adjacent set bits
int waysToKAdjacentSetBits(int dp[][MAX][2], int n, int k,
                           int currentIndex, int adjacentSetBits, int lastBit)
{
    /* Base Case when we form bit
       string of length n */
    if (currentIndex == n) {
  
        // if f(bit string) = k, count this way
        if (adjacentSetBits == k)
            return 1;
        return 0;
    }
  
    if (dp[currentIndex][adjacentSetBits][lastBit] != -1) {
  
        return dp[currentIndex][adjacentSetBits][lastBit];
    }
  
    int noOfWays = 0;
  
    /* Check if the last bit was set,
    if it was set then call for 
    next index by incrementing the
    adjacent bit count else just call
    the next index with same value of
    adjacent bit count and either set the
    bit at current index or let it remain
    unset */
  
    if (lastBit == 1) {
        // set the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1, 
                                                 adjacentSetBits + 1, 1);
  
        // unset the bit at currentIndex
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1,
                                                    adjacentSetBits, 0);
    }
  
    else if (!lastBit) {
        noOfWays += waysToKAdjacentSetBits(dp, n, k,  currentIndex + 1, 
                                                     adjacentSetBits, 1);
  
        noOfWays += waysToKAdjacentSetBits(dp, n, k, currentIndex + 1, 
                                                   adjacentSetBits, 0);
    }
  
    dp[currentIndex][adjacentSetBits][lastBit] = noOfWays;
  
    return noOfWays;
}

https://www.geeksforgeeks.org/count-number-binary-strings-without-consecutive-1s/
Count number of binary strings without consecutive 1’s
Given a positive integer N, count all possible distinct binary strings of length N such that there are no consecutive 1’s.
Examples:
Input:  N = 2
Output: 3
// The 3 strings are 00, 01, 10

Input: N = 3
Output: 5
// The 5 strings are 000, 001, 010, 100, 101
Let a[i] be the number of binary strings of length i which do not contain any two consecutive 1’s and which end in 0. Similarly, let b[i] be the number of such strings which end in 1. We can append either 0 or 1 to a string ending in 0, but we can only append 0 to a string ending in 1. This yields the recurrence relation:
a[i] = a[i - 1] + b[i - 1]
b[i] = a[i - 1] 
The base cases of above recurrence are a[1] = b[1] = 1. The total number of strings of length i is just a[i] + b[i].
Following is the implementation of above solution. In the following implementation, indexes start from 0. So a[i] represents the number of binary strings for input length i+1. Similarly, b[i] represents binary strings for input length i+1
    static  int countStrings(int n)
    {
        int a[] = new int [n];
        int b[] = new int [n];
        a[0] = b[0] = 1;
        for (int i = 1; i < n; i++)
        {
            a[i] = a[i-1] + b[i-1];
            b[i] = a[i-1];
        }
        return a[n-1] + b[n-1];
    }

If we take a closer look at the pattern, we can observe that the count is actually (n+2)’th Fibonacci number for n >= 1. The Fibonacci Numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 141, ….
n = 1, count = 2  = fib(3)
n = 2, count = 3  = fib(4)
n = 3, count = 5  = fib(5)
n = 4, count = 8  = fib(6)
n = 5, count = 13 = fib(7)
................
Therefore we can count the strings in O(Log n) time also using the method 5 here.

Count strings with consecutive 1’s
Given a number n, count number of n length strings with consecutive 1’s in them.
Input  : n = 2
Output : 1
There are 4 strings of length 2, the
strings are 00, 01, 10 and 11. Only the 
string 11 has consecutive 1's.

1) Compute number of binary strings without consecutive 1’s using the approach discussed here. Let this count be c.
2) Count of all possible binary strings with consecutive 1’s is 2^n where n is input length.
3) Total binary strings with consecutive 1 is 2^n – c.
    static int countStrings(int n)
    {
     // Count binary strings without consecutive 1's.
     // See the approach discussed on be
     // ( http://goo.gl/p8A3sW )
        int a[] = new int[n], b[] = new int[n];
        a[0] = b[0] = 1;
  
        for (int i = 1; i < n; i++) {
            a[i] = a[i - 1] + b[i - 1];
            b[i] = a[i - 1];
        }
  
       // Subtract a[n-1]+b[n-1]
 from 2^n
        return (1 << n) - a[n - 1] - b[n - 1];
    }


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts