LeetCode 566 - Reshape the Matrix


https://leetcode.com/problems/reshape-the-matrix
In MATLAB, there is a very useful function called 'reshape', which can reshape a matrix into a new one with different size but keep its original data.
You're given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and columnnumber of the wanted reshaped matrix, respectively.
The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were.
If the 'reshape' operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.
Example 1:
Input: 
nums = 
[[1,2],
 [3,4]]
r = 1, c = 4
Output: 
[[1,2,3,4]]
Explanation:
The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list.
Example 2:
Input: 
nums = 
[[1,2],
 [3,4]]
r = 2, c = 4
Output: 
[[1,2],
 [3,4]]
Explanation:
There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix.
Note:
  1. The height and width of the given matrix is in range [1, 100].
  2. The given r and c are all positive.

X.
https://leetcode.com/articles/reshape-the-matrix/
Do you know how a 2-D array is stored in the main memory(which is 1-D in nature)? It is internally represented as a 1-D array only. The element nums[i][j] of nums array is represented in the form of a one dimensional array by using the index in the form: nums[n*i + j], where m is the number of columns in the given matrix. Looking at the same in the reverse order, while putting the elements in the elements in the resultant matrix, we can make use of a count variable which gets incremented for every element traversed as if we are putting the elements in a 1-D resultant array. But, to convert the count back into 2-D matrix indices with a column count of c, we can obtain the indices as res[count/c][count\%c] where count/c is the row number and count\%c is the coloumn number. Thus, we can save the extra checking required at each step.
https://discuss.leetcode.com/topic/87851/java-concise-o-nm-time
public int[][] matrixReshape(int[][] nums, int r, int c) {
    int n = nums.length, m = nums[0].length, k = 0;
    if (r*c != n*m) return nums;
    int[][] res = new int[r][c];
    for (int i=0;i<r;i++) 
        for (int j=0;j<c;j++,k++) 
            res[i][j] = nums[k/m][k%m];
    return res;
}
http://www.cnblogs.com/grandyang/p/6804753.html
对于这种二维数组大小重新非配的问题的关键就是对应位置的坐标转换,最直接的办法就是先把原数组拉直,变成一条直线,然后再组成新的数组。所以这道题我们先判断给定数组是否能重塑成给定的大小,就是看两者的元素总数是否相同,直接行数乘以列数即可,然后我们新建一个目标大小的数组,并开始遍历,对于每个位置,我们先转为拉直后的一维坐标,然后在算出在原数组中的对应位置赋值过来即可

    vector<vector<int>> matrixReshape(vector<vector<int>>& nums, int r, int c) {
        int m = nums.size(), n = nums[0].size();
        if (m * n != r * c) return nums;
        vector<vector<int>> res(r, vector<int>(c));
        for (int i = 0; i < r; ++i) {
            for (int j = 0; j < c; ++j) {
                int k = i * c + j;
                res[i][j] = nums[k / n][k % n];
            }
        }
        return res;
    }
下面这种方法整体思路和上面没啥区别,但是只使用了一个循环,直接就是遍历拉直后的一维数组的坐标,然后分别转换为两个二维数组的坐标进行赋值
https://discuss.leetcode.com/topic/87901/one-loop
We can use matrix[index / width][index % width] for both the input and the output matrix.
public int[][] matrixReshape(int[][] nums, int r, int c) {
    int m = nums.length, n = nums[0].length;
    if (r * c != m * n)
        return nums;
    int[][] reshaped = new int[r][c];
    for (int i = 0; i < r * c; i++)
        reshaped[i/c][i%c] = nums[i/n][i%n];
    return reshaped;
}
http://blog.csdn.net/u014688145/article/details/71023781
public int[][] matrixReshape(int[][] nums, int r, int c) { int row = nums.length; if (row == 0) return nums; int col = nums[0].length; if (col == 0) return nums; if (row * col != r * c) return nums; int[][] res = new int[r][c]; for (int i = 0; i < row; i++){ for (int j =0; j < col; j++){ int x = i * col + j; int nr = x / c; int nc = x % c; res[nr][nc] = nums[i][j]; } } return res; }

X.
While putting the numbers in the resultant array, we fix a particular row and keep on incrementing the column numbers only till we reach the end of the required columns indicated by c. At this moment, we update the row index by incrementing it and reset the column index to start from 0 again
https://discuss.leetcode.com/topic/87853/easy-java-solution
    public int[][] matrixReshape(int[][] nums, int r, int c) {
        int m = nums.length, n = nums[0].length;
        if (m * n != r * c) return nums;
        
        int[][] result = new int[r][c];
        int row = 0, col = 0;
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                result[row][col] = nums[i][j];
                col++;
                if (col == c) {
                    col = 0;
                    row++;
                }
            }
        }
        
        return result;
    }
X.
https://leetcode.com/articles/reshape-the-matrix/
    public int[][] matrixReshape(int[][] nums, int r, int c) {
        int[][] res = new int[r][c];
        if (nums.length == 0 || r * c != nums.length * nums[0].length)
            return nums;
        int count = 0;
        Queue < Integer > queue = new LinkedList < > ();
        for (int i = 0; i < nums.length; i++) {
            for (int j = 0; j < nums[0].length; j++) {
                queue.add(nums[i][j]);
            }
        }
        for (int i = 0; i < r; i++) {
            for (int j = 0; j < c; j++) {
                res[i][j] = queue.remove();
            }
        }
        return res;
    }

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts