[LeetCode 74] Search a 2D Matrix - Shuatiblog.com


[LeetCode 74] Search a 2D Matrix - Shuatiblog.com
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
  • Integers in each row are sorted from left to right.
  • The first integer of each row is greater than the last integer of the previous row.
Consider the following matrix:
[    [1,   3,  5,  7],    [10, 11, 16, 20],    [23, 30, 34, 50]  ]


思路就是一句话:把二维数组当成一个有序数组,直接二分搜索。
时间复杂度:O(log(mXn))
public boolean searchMatrix(int[][] matrix, int target) {
    if(matrix==null || matrix.length==0 || matrix[0].length==0) 
        return false;

    int m = matrix.length;
    int n = matrix[0].length;
    int start = 0;
    int end = m*n-1;

    while(start<=end){
        int mid=(start+end)/2;
        int midX=mid/n;
        int midY=mid%n;

        if(matrix[midX][midY]==target) 
            return true;
        if(matrix[midX][midY]<target){
            start=mid+1;
        }else{
            end=mid-1;
        }
    }
    return false;
}
https://leetcode.com/discuss/10735/dont-treat-it-as-a-2d-matrix-just-treat-it-as-a-sorted-list
bool searchMatrix(vector<vector<int> > &matrix, int target) { int n = matrix.size(); int m = matrix[0].size(); int l = 0, r = m * n - 1; while (l != r){ int mid = (l + r - 1) >> 1; if (matrix[mid / m][mid % m] < target) l = mid + 1; else r = mid; } return matrix[r / m][r % m] == target; }

Why you might want to consider some other solution instead of this -
  1. row_num * col_num might cause overflow.
  2. Also,/ and % are expensive operations.

http://n00tc0d3r.blogspot.com/2013/05/search-2d-matrix.html
 public boolean searchMatrix(int[][] matrix, int target) {  
   // binary search to find the row  
   int low = 0, high = matrix.length - 1;  
   while (low < high) {  
     int mid = (low + high) / 2;  
     if (target == matrix[mid][0]) return true;  
     else if (target < matrix[mid][0]) high = mid - 1;  
     else if (target < matrix[mid+1][0]) { low = mid; break; }  
     else low = mid + 1;  
   }  
   
   // binary search to find the target  
   int row = low;  
   low = 0; high = matrix[row].length - 1;  
   while (low <= high) {  
     int mid = (low + high) / 2;  
     if (target == matrix[row][mid]) return true;  
     else if (target < matrix[row][mid]) high = mid - 1;  
     else low = mid + 1;  
   }  
   
   return false;  
 }  
经典二分法的时间复杂度为 log(m)+log(n)=log(m*n)
(1)二分法查找锁定target在矩阵的哪一行
(2)二分法查找target是否在锁定的那一行
    bool searchMatrix(vector<vector<int> > &matrix, int target) {
        int m=matrix.size();
        int n=matrix[0].size();
        int index=binary_search_1(matrix,target,0,m-1);
        if(index<0 || index>=m)
            return false;
        return binary_search_2(matrix[index],target,0,n-1);
    }
    int binary_search_1(vector<vector<int> > &matrix, int target, int start, int end)
    //锁定target所在行
    {
        if(start>=end)
            return start;
        int mid=(start+end)/2;
        if(target>=matrix[mid][0]&&target<matrix[mid+1][0])
            return mid;
        else if(target<matrix[mid][0])
            return binary_search_1(matrix,target,start,mid-1);
        else
            return binary_search_1(matrix,target,mid+1,end);
    }
    bool binary_search_2(vector<int> &a, int target, int start, int end) 
    //在锁定行中查找target
    {
        if(start>=end)
            return a[start]==target;
        int mid=(start+end)/2;
        if(a[mid]==target)
            return true;
        else if(a[mid]<target)
            return binary_search_2(a,target,mid+1,end);
        else
            return binary_search_2(a,target,start,mid-1);
    }
http://www.cnblogs.com/springfor/p/3857959.html
http://blog.csdn.net/linhuanmars/article/details/24216235
 1     public boolean searchMatrix(int[][] matrix, int target) {  
 2         if(matrix == null || matrix.length==0 || matrix[0].length==0)  
 3             return false;  
 4         int low = 0;  
 5         int high = matrix.length-1;  
 6         while(low<=high){  
 7             int mid = (low+high)/2;  
 8             if(matrix[mid][0] == target)
 9                 return true;  
10             else if(matrix[mid][0] > target)  
11                 high = mid-1; 
12             else
13                 low = mid+1;  
14         }
15         
16         int row = high; //当从while中跳出时,low指向的值肯定比target大,而high指向的值肯定比target小
17         
18         if(row<0)  
19             return false
20             
21         low = 0;  
22         high = matrix[0].length-1;  
23         while(low<=high){  
24             int mid = (low+high)/2;  
25             if(matrix[row][mid] == target)
26                 return true;  
27             else if(matrix[row][mid] > target)  
28                 high = mid-1;
29             else 
30                 low = mid+1;  
31         }     
32         return false;  
33     } 

http://blog.csdn.net/ever223/article/details/44514849
   static boolean searchMatrix(int[][] matrix, int target) {    
     
        int m = matrix.length;   //行数
        int n = matrix[0].length; //列数
        int up = 0;
        int down = m - 1;
        int left = 0;
        int right = n;
        
        //二分法查找所在行
        while(up < down) {
         int mid = (down + up) / 2;
         if(matrix[mid][n - 1] > target) down = mid;
         else if(matrix[mid][n - 1] < target) up = mid + 1;
         else return true;
        }
        //二分法查找所在列
        while(left < right) {
         int mid = (left + right) / 2;
         if(matrix[up][mid] > target) right = mid;
         else if(matrix[up][mid] < target) left = mid + 1;
         else return true;
        }        
     return false;
    }
X. 时间复杂度为O(m+n)
https://leetcode.com/discuss/68637/java-clear-solution
The basic idea is from right corner, if the current number greater than target col - 1 in same row, else if the current number less than target, row + 1 in same column, finally if they are same, we find it, and return return.
  public boolean searchMatrix(int[][] matrix, int target) {
            int i = 0, j = matrix[0].length - 1;
            while (i < matrix.length && j >= 0) {
                    if (matrix[i][j] == target) {
                        return true;
                    } else if (matrix[i][j] > target) {
                        j--;
                    } else {
                        i++;
                    }
                }

            return false;
        }
https://leetcode.com/discuss/8741/share-my-o-n-m-solution
bool searchMatrix(vector<vector<int> > &matrix, int target) { int n = (int)matrix.size(); int m = (int)matrix[0].size(); --n; --m; while(n > 0 && matrix[n - 1][m] >= target) --n; while(m > 0 && matrix[n][m - 1] >= target) --m; return (matrix[n][m] == target); }
Count Negative in a 2D Sorted Matrix
Write an efficient algorithm that searches for a value in an n x m table (two-dimensional array). This table is sorted along the rows and columns — that is,

Table[i][j] ≤ Table[i][j + 1],
Table[i][j] ≤ Table[i + 1][j]
a linear walk from top-right to bottom-left.
int countNegatives(int array[][], int size) {
    int col = size - 1, row = 0;
    int count = 0;

    while(row < size && col >= 0) {
        if(array[row][col] < 0 ) {
            count = count + (col + 1);
            row = row + 1;
        }
        else {
            col = col - 1;
        }
    }
    return count;
}
Read full article from [LeetCode 74] Search a 2D Matrix - Shuatiblog.com

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts