Remove minimum elements from either side such that 2*min becomes more than max - GeeksforGeeks


Remove minimum elements from either side such that 2*min becomes more than max - GeeksforGeeks
Given an unsorted array, trim the array such that twice of minimum is greater than maximum in the trimmed array. Elements should be removed either end of the array.
Number of removals should be minimum.
Examples:
arr[] = {4, 5, 100, 9, 10, 11, 12, 15, 200}  Output: 4  We need to remove 4 elements (4, 5, 100, 200)  so that 2*min becomes more than max.  
O(N^2)
A O(n^2) Solution
The idea is to find the maximum sized subarray such that 2*min > max. We run two nested loops, the outer loop chooses a starting point and the inner loop chooses ending point for the current starting point. We keep track of longest subarray with the given property.
int minRemovalsDP(int arr[], int n)
{
    // Initialize starting and ending indexes of the maximum
    // sized subarray with property 2*min > max
    int longest_start = -1, longest_end = 0;
    // Choose different elements as starting point
    for (int start=0; start<n; start++)
    {
        // Initialize min and max for the current start
        int min = INT_MAX, max = INT_MIN;
        // Choose different ending points for current start
        for (int end = start; end < n; end ++)
        {
            // Update min and max if necessary
            int val = arr[end];
            if (val < min) min = val;
            if (val > max) max = val;
            // If the property is violated, then no
            // point to continue for a bigger array
            if (2 * min <= max) break; //exit early
            // Update longest_start and longest_end if needed
            if (end - start > longest_end - longest_start ||
                longest_start == -1)
            {
                longest_start = start;
                longest_end = end;
            }
        }
    }
    // If not even a single element follow the property,
    // then return n
    if (longest_start == -1) return n;
    // Return the number of elements to be removed
    return (n - (longest_end - longest_start + 1));
}

http://ideone.com/NaZX87
There is an O(n*log(n)) solution for this problem.

The main idea is based on the observation that you can not increase min or decrease max by adding more number, but you can only do it by cut off number.

Thus we can use a sliding window go through the entire array to keep track of the longest satisfied sub-array in O(n), and build a sparse table to query min and max in range(i, j) in O(1).

Since building a sparse table will take time O(n*log(n)), the entire algorithm will have the time complexity of O(n*log(n)).
O(N^3)
int minRemovalsDP(int arr[], int n)
{
    // Create a table to store solutions of subproblems
    int table[n][n], gap, i, j, mn, mx;
    // Fill table using above recursive formula. Note that the table
    // is filled in diagonal fashion (similar to http://goo.gl/PQqoS),
    // from diagonal elements to table[0][n-1] which is the result.
    for (gap = 0; gap < n; ++gap)
    {
        for (i = 0, j = gap; j < n; ++i, ++j)
        {
            mn = min(arr, i, j);
            mx = max(arr, i, j);
            table[i][j] = (2*mn > mx)? 0: min(table[i][j-1]+1,
                                              table[i+1][j]+1);
        }
    }
    return table[0][n-1];
}
1) We can avoid calculation of min() and/or max() when min and/or max is/are not changed by removing corner elements.
2) We can pre-process the array and build segment tree in O(n) time. After the segment tree is built, we can query range minimum and maximum in O(Logn) time. The overall time complexity is reduced to O(n2Logn) time.dp

A naive solution is to try every possible case using recurrence. Following is the naive recursive algorithm. 
T(n) = 2T(n-1) + O(n) 
An upper bound on solution of above recurrence would be O(n x 2n).
minRemovals(int arr[], int l, int h)
1) Find min and max in arr[l..h]
2) If 2*min > max, then return 0.
3) Else return minimum of "minRemovals(arr, l+1, h) + 1"
   and "minRemovals(arr, l, h-1) + 1"
int minRemovals(int arr[], int l, int h)
{
    // If there is 1 or less elements, return 0
    // For a single element, 2*min > max
    // (Assumption: All elements are positive in arr[])
    if (l >= h) return 0;
    // 1) Find minimum and maximum in arr[l..h]
    int mn = min(arr, l, h);
    int mx = max(arr, l, h);
    //If the property is followed, no removals needed
    if (2*mn > mx)
       return 0;
    // Otherwise remove a character from left end and recur,
    // then remove a character from right end and recur, take
    // the minimum of two is returned
    return min(minRemovals(arr, l+1, h),
               minRemovals(arr, l, h-1)) + 1;
}
Read full article from Remove minimum elements from either side such that 2*min becomes more than max - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts