B+ tree - Wikipedia


B+ tree - Wikipedia, the free encyclopedia
A B+ tree is an n-ary tree with a variable but often large number of children per node. A B+ tree consists of a root, internal nodes and leaves.[1] The root may be either a leaf or a node with two or more children.[2]
A B+ tree can be viewed as a B-tree in which each node contains only keys (not key-value pairs), and to which an additional level is added at the bottom with linked leaves.
The primary value of a B+ tree is in storing data for efficient retrieval in a block-oriented storage context — in particular, filesystems. This is primarily because unlike binary search trees, B+ trees have very high fanout (number of pointers to child nodes in a node,[1] typically on the order of 100 or more), which reduces the number of I/O operations required to find an element in the tree.

http://jxlilin.blogspot.in/2013/11/b-tree-implementation-in-java.html
The most commonly implemented form of the B-Tree is the B+ Tree. The difference between them is that the internal nodes of B+ tree do not store records, they are used for navigation only.

★ Definition of B+ Tree
    A B+ Tree of order m has these properties:
    - The root is either a leaf or has at least two children;
    - Each internal node, except for the root, has between ⎡m/2⎤ and m children;
    - Internal nodes do not store record, only store key values to guild the search;
    - Each leaf node, has between ⎡m/2⎤ and m keys and values;
    - Leaf node store keys and records or pointers to records;
    - All eaves are at the same level in the tree, so the tree is always height balanced.
Search
  • Do binary search on keys in current node. 
    • When current node is a leaf node:
      • If search key is found, then return record.
      • If search key is not found, then report an unsuccessful search.
    • When current node is a internal node:
      • If search key < key_0, then repeat the search process on the first branch of current node.
      • If search key >= key_last, then repeat the search process on the last branch of current node.
      • Otherwise, find the first key_i >= key, and repeat the search process on the (i+1) branch of current node.
Insertion
  • Perform a search to determine which leaf node the new key should go into.
  • If the node is not full, insert the new key, done!
  • Otherwise, split the leaf node.
    • Allocate a new leaf node and move half keys to the new node.
    • Insert the new leaf's smallest key into the parent node.
    • If the parent is full, split it too, repeat the split process above until a parent is found that need not split.
    • If the root splits, create a new root which has one key and two children.
Deletion
  • Perform a search to determine which leaf node contains the key.
  • Remove the key from the leaf node.
    • If the leaf node is at least half-full, done!
    • If the leaf node as L is less than half-full:
      • Try to borrow a key from sibling node as S (adjacent node with same parent)
        • If S is L's left sibling, then borrow S's last key, and replace their parent navigate key with this borrowed key value.
        • If S is L's right sibling, then borrow S's first key, and replace their parent navigate key with S's second key value.
      • If can not borrow a key from sibling node, then merge L and sibling S
        • After merged L and S, delete their parent navigate key and proper child pointer.
        • Repeat the borrow or merge operation on parent node, perhaps propagate to root node and decrease the height of the tree.
http://www.quora.com/B+-Trees
http://www.quora.com/What-are-the-differences-between-B+Tree-and-B-Tree
A B+ tree only  stores data in the leaf nodes.

With no data in the interior nodes the fan-out can be higher than with a B tree, tree depth shorter, reads from secondary storage lower, cache hit rate on intermediate nodes better, and time to data faster.
  1. B+ trees don't store data pointer in interior nodes, they are ONLY stored in leaf nodes. This is not optional as in B-Tree. This means that interior nodes can fit more keys on block of memory.
  2. The leaf nodes of B+ trees are linked, so doing a linear scan of all keys will requires just one pass through all the leaf nodes. A B tree, on the other hand, would require a traversal of every level in the tree. This property can be utilized for efficient search as well since data is stored only in leafs.

B- trees (called Btree not B minus tree) keeps key values and corresponding records in the same node whereas all the records are stored in the leaves of B+tree. (If you search a value and it matches with a internal node for B- tree you might get it directly from the node but for B+tree you need to go leaves anyway for the exact record ) In that way each non leaf node is able to store more pointer in the places of records. It gives lower height trees compared to B- trees in which it results some specific pros and cons.

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts