MinHash for dummies


http://en.wikipedia.org/wiki/MinHash
MinHash (or the min-wise independent permutations locality sensitive hashing scheme) is a technique for quickly estimating how similar two sets are.

It's initially used in the AltaVista search engine to detect duplicate web pages and eliminate them from search results.
It has also been applied in large-scale clustering problems, such as clustering documents by the similarity of their sets of words.

The Jaccard similarity coefficient is a commonly used indicator of the similarity between two sets. For sets A and B it is defined to be the ratio of the number of elements of their intersection and the number of elements of their union:
 J(A,B) = {{|A \cap B|}\over{|A \cup B|}}.



Matt's Blog: MinHash for dummies
A measure of how similar these two sets are is known as the Jaccard Coefficient. It is calculated asnumber of common elements / (total number of elements - number of common elements).

While a document can be though of as a giant set of words, we don't just break down a document into individual words, place them in a set and calculate the similarity, because that looses the importance of the order of the words. The sets

Set a = new Set(["I", "went", "to", "work", "today"]);
Set b = new Set(["today", "I", "went", "to", "work"]);

would be considered 100% similar, even though they clearly are not.

Instead we break a document down into what are known as shingles. Each shingle contains a set number of words, and a document is broken down into total words - single length + 1 number of shingles. 

Optimizing the process

So we now have a way to compare two documents for similarity, but it is not an efficient process. To find similar documents to document A in a directory of 10000 documents, we need compare each pair individually. This is obviously not going to scale well.

What we can do to reduce some cycles is compare sets of randomly selected shingles from two documents. So for a document that is 10000 words long, we break it down into 9996 shingles, and randomly select say 200 of those to represent the document. 

Computing and saving the random shingle selections

1. Break down the document a set of shingles.
2. Calculate the hash value for every shingle.
3. Store the minimum hash value found in step 2.
4. Repeat steps 2 and 3 with different hash algorithms 199 more times to get a total of 200 min hash values.

Um, 199 more hash algorithms? WTF!

The short answer is that you XOR the value returned by String.hashCode() with 199 random numbers to generate the 199 other hash code values. Just make sure that you are using the same 199 random numbers across all the documents.

Great, but I still have to compare every document to every other document. Can this be optimized?

Locality sensitive hashing (LSH) involves generating a hash code such that similar items will tend to get similar hash codes. This is the opposite of what .hashCode() does.

LSH allows you to precompute a hash code that is then quickly and easily compared to another precomputed LSH hash code to determine if two objects should be compared in more detail or quickly discarded.

This is useful when you have a document, and you want to know which other documents to compare to it for similarity.
https://mymagnadata.wordpress.com/2010/12/28/min-hash/
Lets suppose there are two sets of data S1 {“THIS”,”IS”,”ME”} and S2 {“THAT”,”IS”,”ME”}. Lets create a bit map index for this set of data with rows as union of Set S1 and Set S2 and column values as bits (1,0) representing presence or absence of data row in the set
THIS  1 0
THAT 0 1
IS     1 1
ME 1 1
Pick n-hash functions (n is random number), n number of hash functions could be any +ve integer >= S1.size()+S2.size(). For this example lets says n = S1.size() + S2.size().
[0][1][2][3][4][5] => {2222,12332,45432,45426,2124,8656}
For each column, hash function keep a slot. With our example we have 2 columns and 6 hash functions
minHashSlots => [0][0]  [0][1] [0][2] [0][3] [0][4] [0][5], [1][0]  [1][1] [1][2] [1][3] [1][4] [1][5]


Java code: http://www.sanfoundry.com/java-program-implement-min-hash/
  1. public class MinHash<T>
  2. {
  3.     private int hash[];
  4.     private int numHash;
  5.  
  6.     public MinHash(int numHash)
  7.     {
  8.         this.numHash = numHash;
  9.         hash = new int[numHash];
  10.         Random r = new Random(11);
  11.         for (int i = 0; i < numHash; i++)
  12.         {
  13.             int a = (int) r.nextInt();
  14.             int b = (int) r.nextInt();
  15.             int c = (int) r.nextInt();
  16.             int x = hash(a * b * c, a, b, c);
  17.             hash[i] = x;
  18.         }
  19.     }
  20.  
  21.     public double similarity(Set<T> set1, Set<T> set2)
  22.     {
  23.         int numSets = 2;
  24.         Map<T, boolean[]> bitMap = buildBitMap(set1, set2);
  25.         int[][] minHashValues = initializeHashBuckets(numSets, numHash);
  26.         computeMinHashForSet(set1, 0, minHashValues, bitMap);
  27.         computeMinHashForSet(set2, 1, minHashValues, bitMap);
  28.         return computeSimilarityFromSignatures(minHashValues, numHash);
  29.     }
  30.  
  31.     private static int[][] initializeHashBuckets(int numSets,
  32.             int numHashFunctions)
  33.     {
  34.         int[][] minHashValues = new int[numSets][numHashFunctions];
  35.         for (int i = 0; i < numSets; i++)
  36.         {
  37.             for (int j = 0; j < numHashFunctions; j++)
  38.             {
  39.                 minHashValues[i][j] = Integer.MAX_VALUE;
  40.             }
  41.         }
  42.         return minHashValues;
  43.     }
  44.  
  45.     private static double computeSimilarityFromSignatures(
  46.             int[][] minHashValues, int numHashFunctions)
  47.     {
  48.         int identicalMinHashes = 0;
  49.         for (int i = 0; i < numHashFunctions; i++)
  50.         {
  51.             if (minHashValues[0][i] == minHashValues[1][i])
  52.             {
  53.                 identicalMinHashes++;
  54.             }
  55.         }
  56.         return (1.0 * identicalMinHashes) / numHashFunctions;
  57.     }
  58.  
  59.     private static int hash(int x, int a, int b, int c)
  60.     {
  61.         int hashValue = (int) ((a * (x >> 4) + b * x + c) & 131071);
  62.         return Math.abs(hashValue);
  63.     }
  64.  
  65.     private void computeMinHashForSet(Set<T> set, int setIndex,
  66.             int[][] minHashValues, Map<T, boolean[]> bitArray)
  67.     {
  68.         int index = 0;
  69.         for (T element : bitArray.keySet())
  70.         {
  71.             /*
  72.              * for every element in the bit array
  73.              */
  74.             for (int i = 0; i < numHash; i++)
  75.             {
  76.                 /*
  77.                  * for every hash
  78.                  */
  79.                 if (set.contains(element))
  80.                 {
  81.                     /*
  82.                      * if the set contains the element
  83.                      */
  84.                     int hindex = hash[index];
  85.                     if (hindex < minHashValues[setIndex][index])
  86.                     {
  87.                         /*
  88.                          * if current hash is smaller than the existing hash in
  89.                          * the slot then replace with the smaller hash value
  90.                          */
  91.                         minHashValues[setIndex][i] = hindex;
  92.                     }
  93.                 }
  94.             }
  95.             index++;
  96.         }
  97.     }
  98.  
  99.     public Map<T, boolean[]> buildBitMap(Set<T> set1, Set<T> set2)
  100.     {
  101.         Map<T, boolean[]> bitArray = new HashMap<T, boolean[]>();
  102.         for (T t : set1)
  103.         {
  104.             bitArray.put(t, new boolean[] { true, false });
  105.         }
  106.         for (T t : set2)
  107.         {
  108.             if (bitArray.containsKey(t))
  109.             {
  110.                 // item is not present in set1
  111.                 bitArray.put(t, new boolean[] { true, true });
  112.             }
  113.             else if (!bitArray.containsKey(t))
  114.             {
  115.                 // item is not present in set1
  116.                 bitArray.put(t, new boolean[] { false, true });
  117.             }
  118.         }
  119.         return bitArray;
  120.     }
  121.  
  122.     public static void main(String[] args)
  123.     {
  124.         Set<String> set1 = new HashSet<String>();
  125.         set1.add("FRANCISCO");
  126.         set1.add("MISSION");
  127.         set1.add("SAN");
  128.         Set<String> set2 = new HashSet<String>();
  129.         set2.add("FRANCISCO");
  130.         set2.add("MISSION");
  131.         set2.add("SAN");
  132.         set2.add("USA");
  133.         MinHash<String> minHash = new MinHash<String>(set1.size() + set2.size());
  134.         System.out.println("Set1 : " + set1);
  135.         System.out.println("Set2 : " + set2);
  136.         System.out.println("Similarity between two sets: "
  137.                 + minHash.similarity(set1, set2));
  138.     }
  139. }
https://en.wikipedia.org/wiki/Locality-sensitive_hashing
Locality-sensitive hashing (LSHreduces the dimensionality of high-dimensional data. LSH hashes input items so that similar items map to the same “buckets” with high probability (the number of buckets being much smaller than the universe of possible input items). LSH differs from conventional and cryptographic hash functions because it aims to maximize the probability of a “collision” for similar items.

http://web.stanford.edu/class/cs276b/handouts/minhash.pdf
http://robertheaton.com/2014/05/02/jaccard-similarity-and-minhash-for-winners/

SimHash: http://massivealgorithms.blogspot.com/2014/12/simhash-hash-based-similarity-detection.html
Read full article from Matt's Blog: MinHash for dummies

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts