Determine if Two Rotated Rectangles Overlap Each Other


Determine if Two Rotated Rectangles Overlap Each Other
The question is how to determine if two rectangles overlap each other. To simplify the question, we say the rectangles are on a 2 dimensional plane. The rectangles can be rotated.

The first problem is How to represent a rectangle
typedef struct point {
    int x;
    int y;
} Point;
 
typedef struct rectangle {
    Point p[4];
} Rectangle;

Actually, using three points is sufficient, since the last one can be calculate by the first three. This solution use 8 integers to present a rectangle. Another solution is to use angle. First of all, we need the angle between the first (counter-clockwise) side and x-axis. We also need a start point, and the length of each side. Then the struct can be,
typedef struct point {
    int x;
    int y;
} Point;
 
typedef struct rectangle {
    Point start;
    int angle;
    int side0, side1;
} Rectangle;

if the given rectangles are rotated by any angle, my solution is to check the corners of each rectangle. If one of them is inside of another rectangle, these two rectangles overlap. Otherwise, they are not.
The problem is how to determine if a point is in a rectangle. The idea is to use orientation of a three point triplet. The idea to exam whether the sides of each rectangle are intersected. If not, There will be two cases, these two rectangle are isolated, or on is in another. Then, we have to check if any points of a rectangle is in another. Suppose that the rectangle, r, has four points, {a, b, c, d}. The given point is p. We can observe that,
  • If p is inside of r, (a, b, p), (b, c, p), (c, d, p) and (d, a, p) will take the same orientations.
  • Otherwise, at least one of them have a different orientation.
typedef struct point {
    int x;
    int y;
} Point;
 
typedef struct rectangle {
    Point p[4];
} Rectangle;
// Find the orientation of ordered triplet(p, q, r).
// 0 - colinear
// 1 - clockwise
// 2 - counterclockwise
int orientation(Point *p, Point *q, Point *r)
{
    int val = (q->y - p->y) * (r->x - q->x) -
              (q->x - p->x) * (r->y - q->y);
 
    if (0 == val)
        return 0;
    return val > 0 ? 1: 2;
}
 
// Given three colinear points p, q, r
// check if point q lines on line segment(p, r)
// 0 - Not on the segment
// 1 - On the segment
int on_segment(Point *p, Point *q, Point *r)
{
    if (q->x <= max(p->x, r->x) && q->x >= min(p->x, r->x) &&
        q->y <= max(p->y, r->y) && q->y >= min(p->y, r->y))
        return 1;
 
    return 0;
}
 
// Exam if the line segment (p1, q1) and (p2, q2) are intersected
// 0 - Not intersected
// 1 - Intersected
int is_line_intersected(Point *p1, Point *q1, Point *p2, Point *q2)
{
    int o1 = orientation(p1, q1, p2);
    int o2 = orientation(p1, q1, q2);
    int o3 = orientation(p2, q2, p1);
    int o4 = orientation(p2, q2, q1);
    
    if (o1 != o2 && o3 != o4)
        return 1;
 
    if (o1 == 0 && on_segment(p2, p2, q1))
        return 1;
    if (o2 == 0 && on_segment(p1, q2, q1))
        return 1;
    if (o3 == 0 && on_segment(p2, p1, q2))
        return 1;
    if (o4 == 0 && on_segment(p2, q1, q2))
        return 1;
 
    return 0;
}
 
// Exam if a point is in a rectangle
// 0 - Out
// 1 - In
int is_point_in_rectangle(Point *p, Rectangle *rec)
{
    Point *rp = rec->p;
    // orientaion
    int o = orientation(rp + 0, rp + 1, p);
 
    if (o == 0)
        return 1;
 
    return  o == orientation(rp + 1, rp + 2, p) &&
            o == orientation(rp + 2, rp + 3, p) &&
            o == orientation(rp + 3, rp + 0, p);
}
 
// Exam if two rectangles are intersected
// 0 - Not intersected
// 1 - Intersected
int is_rectangle_intersected(Rectangle *rec0, Rectangle *rec1)
{
    Point *p0 = rec0->p;
    Point *p1 = rec1->p;
    int i, j;
    Point c0, c1;
 
    // check sides of each rectangle
    // if two are intersected, the rectagle should intersected
    for (i = 0; i < 4; ++i) {
        for (j = 0; j, j < 4; ++j) {
            if (is_line_intersected(p0 + i, p0 + (i + 1) % 4, p1 + j, p1 + (j + 1) % 4)) {
                return 1;
            }
        }
    }
 
    // check if one point of rectangle 0 is in rectangle 1
    // or one point of rectangle 1 is in rectangle 0
    if (is_point_in_rectangle(p1, rec0) ||
        is_point_in_rectangle(p0, rec1))
        return 1;
 
    return 0;
}

If the Edges are parallel to the coordinate axes, it is not that complicated, check this article.
http://articles.leetcode.com/2011/05/determine-if-two-rectangles-overlap.html

http://vijayt.com/Post/QuickSelect-works-in-linear-time
https://github.com/jaak-s/extraTrees/blob/master/src/main/java/org/extratrees/QuickSelect.java
Read full article from Determine if Two Rotated Rectangles Overlap Each Other

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts