Find Pythagorean triples in an unsorted array


Find Pythagorean triples in an unsorted array | PROGRAMMING INTERVIEWS
Question: Find Pythagorean triples in an unsorted array
Find triplets in an integer array A[] which satisfy following condition:
a[i]^2 + a[j]^2 = a[k]^2
1) No need to compute square again and again (need extra space of order N)
2) start for last index of square array.
3) Find 2 elements in square array form beginning to that element, which adds up to it. 
  1. //Find triplets in an integer array which satisfy a[i]^2 + a[j]^2 = a[k]^2  
  2.   
  3. A[] = 2 1 9 4 8 7 6 3 5 //input  
  4.   
  5. Sort(A); // Sort the input array  
  6.   
  7. //Finally A[] = 1 2 3 4 5 6 7 8 9  
  8.   
  9. //Make an array of squares to avoid compute them again and again  
  10. for (i=0; i < n; i++)  
  11. {  
  12. Sq[i] = A[i]*A[i];  
  13. }  
  14. //Finally Sq[] =1 4 9 16 25 49 64 81  
  15.   
  16. n = length;  
  17. for (i=n; i > 0; i--)  
  18. {  
  19. res = false;  
  20. //Search for 2 numbers in Sq array from 0 to i-1 which  
  21. //adds to Sq[i] like we have discussed in last post.  
  22. //This will give u a search result in O(n) time.  
  23. //Make res as true if we are able to find any triplet.  
  24.   
  25. if (res)  
  26. {  
  27.  process(triplet);  
  28. }  
  29. }  

http://yuanhsh.iteye.com/blog/2182082
Method 2 : Using Hash Map to search.
1) Create two loops and find all pairs.
  2) Find +C, -C = SquareRoot ( A^2 + B^2)
  3) Using Hash find whether C is present in Array or not.
  4) If C is present print Triplet A, B, C 
  5) Else continue till both loop completes.

Method 3 : Using Maths 
We know that 
a = m^2 - n^2, b = 2mn, c = m^2 + n^2
From here you can get clue.. 
If not .. read further.

1)Sort the array in O(N log N) time.
2)For each element B, find the prime factorization. such that  
b = 2mn , m > n. m and n are prime
3)Calculate C = m^2 + n^2 , A= m^2 - n^2
4)With Hashmap find If C and A are in Array. Then Print Triplet C,A,B
5)Else Continue.

Explanation :
Consider Array : {3,6,8,5,10,4,12,14}

Step 1) 
Finding prime factorization such that b=2mn.
3 - not possible.
6 - 2*1*3 so m=3, n=1
8 - 2*2*2 so m=2,n=2 (not allowed , as they need to be co-prime)
5 - not possible
10 - 2*1*5 so m=5, n=1
4 - 2*1*2 so m=2, n=1 ...

Step 2) 

6 - 2*1*3 so m=3, n=1 m^2 + n^2 = 10 , m^2 - n^2 = 8 , 
both numbers are present in array can be found in O(1) 
with Hash.
    C = 10, A =8 and B = 6

=> similarly for 3,4,5 we can find 
m=2,n=1, B=4, C=5, A=3.
http://comproguide.blogspot.com/2014/08/finding-all-pythagorean-triples-in-array.html
void printPythagoreanTriples( vector<int> & arr )
{
if( arr.size() < 3 )
{
cout << "Input too small!" << endl;
return;
}
sort( arr.begin(), arr.end(), greater<int>());

//square each number in array; using STL transform() algorithm
transform( arr.begin(), arr.end(), arr.begin(), getSquare );

int i;
for( i = 0; i < arr.size()-2; i++ )
{
int start = i+1, end = arr.size()-1;
while(start < end)
{
if( arr[i] == arr[start] + arr[end] )
{
cout <<(int)sqrt(arr[i]*1.0) << " ";
cout <<(int)sqrt(arr[start]*1.0) << " ";
cout <<(int)sqrt(arr[end]*1.0) << endl;
start++;
end--;
}
else if( arr[i] < arr[start]+arr[end] )
{
start++;
}
else
{
end--;
}
}
}
}
http://www.dsalgo.com/2013/04/find-pythagorean-triplets-in-array.html
 private static void findPythagoreanTriplets(int[] arr) {
  HashSet squares = new HashSet();
  for (int num : arr)
   squares.add((long) num * num);
  for (int i = 0; i < arr.length - 1; ++i)
   for (int j = i + 1; j < arr.length; ++j) {
    long square = (long) arr[i] * arr[i] + (long) arr[j] * arr[j];
    if (squares.contains(square)) {
     System.out.println(arr[i] + "," + arr[j] + ","
       + (long) Math.sqrt(square));
    }
   }
 }

http://codes-to-problem.blogspot.com/2012/11/finding-pythagorean-triplets-in-array.html

http://tech-queries.blogspot.com/2010/12/sum-of-2-nos-in-array-equal-to-given.html
Efficiency: if input array A is sorted then O(N).
else O(NlogN) coz of sorting time NlogN.
  1. bool sum_euqal_to_N(int A[], int N)  
  2. {  
  3.  int start = 0;  
  4.  int end = MAX-1;  
  5.    
  6.  //check for boundary conditions  
  7.  if ((A[start]+A[start+1]) > N)  
  8.   return false;  
  9.    
  10.  if ((A[end]+A[end+1]) < N)  
  11.   return false;  
  12.    
  13.    
  14.  while (end > start)  
  15.  {  
  16.   if ((A[start] + A[end]) < N)  
  17.    start++;  
  18.   else if ((A[start] + A[end]) == N)  
  19.   {  
  20.    cout << A[start] << " " << A[end] << endl;  
  21.    return true;  
  22.   }  
  23.   else  
  24.    end--;  
  25.  }  
  26.    
  27.  return false;  
  28. }  

http://www.geeksforgeeks.org/find-pythagorean-triplet-in-an-unsorted-array/
Given an array of integers, write a function that returns true if there is a triplet (a, b, c) that satisfies a2 + b2 = c2.
O(N^2)
   static boolean isTriplet(int arr[], int n)
    {
        // Square array elements
        for (int i=0; i<n; i++)
            arr[i] = arr[i]*arr[i];
  
        // Sort array elements
        Arrays.sort(arr);
  
        // Now fix one element one by one and find the other two
        // elements
        for (int i = n-1; i >= 2; i--)
        {
            // To find the other two elements, start two index
            // variables from two corners of the array and move
            // them toward each other
            int l = 0; // index of the first element in arr[0..i-1]
            int r = i-1; // index of the last element in arr[0..i-1]
            while (l < r)
            {
                // A triplet found
                if (arr[l] + arr[r] == arr[i])
                    return true;
  
                // Else either move 'l' or 'r'
                if (arr[l] + arr[r] < arr[i])
                   l++;
                else
                   r--;
            }
        }
  
        // If we reach here, then no triplet found
        return false;
    }
O(N^3) - A simple solution is to run three loops, three loops pick three array elements and check if current three elements form a Pythagorean Triplet.
   static boolean isTriplet(int ar[], int n)
    {
        for (int i=0; i<n; i++)
        {
            for (int j=i+1; j<n; j++)
            {   
                for (int k=j+1; k<n; k++)
                {
                    // Calculate square of array elements
                    int x = ar[i]*ar[i], y = ar[j]*ar[j], z = ar[k]*ar[k];
  
                    if (x == y + z || y == x + z || z == x + y)
                        return true;
                }
            }
        }
  
        // If we reach here, no triplet found
        return false;
    }

Read full article from Find Pythagorean triples in an unsorted array | PROGRAMMING INTERVIEWS

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts