Using Trie


http://www.geeksforgeeks.org/print-valid-words-possible-using-characters-array/
Given a dictionary and a character array, print all valid words that are possible using characters from the array.
The idea is to use Trie data structure to store dictionary, then search words in Trie using characters of given array.
  1. Create an empty Trie and insert all words of given dictionary into the Trie.
  2. After that, we have pick only those characters in ‘Arr[]’ which are a child of the root of Trie.
  3. To quickly find whether a character is present in array or not, we create a hash of character arrays.
struct TrieNode
{
    TrieNode *Child[SIZE];
    // isLeaf is true if the node represents
    // end of a word
    bool leaf;
};
// A recursive function to print all possible valid
// words present in array
void searchWord(TrieNode *root, bool Hash[], string str)
{
    // if we found word in trie / dictionary
    if (root->leaf == true)
        cout << str << endl ;
    // traverse all child's of current root
    for (int K =0; K < SIZE; K++)
    {
        if (Hash[K] == true && root->Child[K] != NULL )
        {
            // add current character
            char c = int_to_char(K);
            // Recursively search reaming character of word
            // in trie
            searchWord(root->Child[K], Hash, str + c);
        }
    }
}
// Prints all words present in dictionary.
void PrintAllWords(char Arr[], TrieNode *root, int n)
{
    // create a 'has' array that will store all present
    // character in Arr[]
    bool Hash[SIZE];
    for (int i = 0 ; i < n; i++)
        Hash[char_int(Arr[i])] = true;
    // tempary node
    TrieNode *pChild = root ;
    // string to hold output words
    string str = "";
    // Traverse all matrix elements. There are only 26
    // character possible in char array
    for (int i = 0 ; i < SIZE ; i++)
    {
        // we start searching for word in dictionary
        // if we found a character which is child
        // of Trie root
        if (Hash[i] == true && pChild->Child[i] )
        {
            str = str+(char)int_to_char(i);
            searchWord(pChild->Child[i], Hash, str);
            str = "";
        }
    }
}
    // Root Node of Trie
    TrieNode *root = getNode();
    // insert all words of dictionary into trie
    int n = sizeof(Dict)/sizeof(Dict[0]);
    for (int i=0; i<n; i++)
        insert(root, Dict[i]);
    char arr[] = {'e', 'o', 'b', 'a', 'm', 'g', 'l'} ;
    int N = sizeof(arr)/sizeof(arr[0]);
    PrintAllWords(arr, root, N);

Fast and Easy Levenshtein distance using a Trie
http://stevehanov.ca/blog/index.php?id=114
Only the last row changes. We can avoid a lot of work if we can process the words in order, so we never need to repeat a row for the same prefix of letters. The trie data structure is perfect for this. A trie is a giant tree, where each node represents a partial or complete word. Here's one with the words cat, cats, catacomb, and catacombs in it (courtesy of zwibbler.com). Nodes that represent a word are marked in black.
With a trie, all shared prefixes in the dictionary are collaped into a single path, so we can process them in the best order for building up our levenshtein tables one row at a time. 
class TrieNode:
    def __init__(self):
        self.word = None
        self.children = {}

        global NodeCount
        NodeCount += 1

    def insert( self, word ):
        node = self
        for letter in word:
            if letter not in node.children: 
                node.children[letter] = TrieNode()

            node = node.children[letter]

        node.word = word

# read dictionary file into a trie
trie = TrieNode()
for word in open(DICTIONARY, "rt").read().split():
    WordCount += 1
    trie.insert( word )

print "Read %d words into %d nodes" % (WordCount, NodeCount)

# The search function returns a list of all words that are less than the given
# maximum distance from the target word
def search( word, maxCost ):

    # build first row
    currentRow = range( len(word) + 1 )

    results = []

    # recursively search each branch of the trie
    for letter in trie.children:
        searchRecursive( trie.children[letter], letter, word, currentRow, 
            results, maxCost )

    return results

# This recursive helper is used by the search function above. It assumes that
# the previousRow has been filled in already.
def searchRecursive( node, letter, word, previousRow, results, maxCost ):

    columns = len( word ) + 1
    currentRow = [ previousRow[0] + 1 ]

    # Build one row for the letter, with a column for each letter in the target
    # word, plus one for the empty string at column 0
    for column in xrange( 1, columns ):

        insertCost = currentRow[column - 1] + 1
        deleteCost = previousRow[column] + 1

        if word[column - 1] != letter:
            replaceCost = previousRow[ column - 1 ] + 1
        else:                
            replaceCost = previousRow[ column - 1 ]

        currentRow.append( min( insertCost, deleteCost, replaceCost ) )

    # if the last entry in the row indicates the optimal cost is less than the
    # maximum cost, and there is a word in this trie node, then add it.
    if currentRow[-1] <= maxCost and node.word != None:
        results.append( (node.word, currentRow[-1] ) )

    # if any entries in the row are less than the maximum cost, then 
    # recursively search each branch of the trie
    if min( currentRow ) <= maxCost:
        for letter in node.children:
            searchRecursive( node.children[letter], letter, word, currentRow, 
                results, maxCost )

start = time.time()
results = search( TARGET, MAX_COST )
end = time.time()

for result in results: print result        

print "Search took %g s" % (end - start)

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts