Count all pairs with given XOR
Count the number of subarrays having a given XOR - GeeksforGeeks
A Simple Solution is to use two loops to go through all possible subarrays of arr[] and count the number of subarrays having XOR of their elements as m.
Read full article from Count the number of subarrays having a given XOR - GeeksforGeeks
Count the number of subarrays having a given XOR - GeeksforGeeks
Given an array of integers arr[] and a number m, count the number of subarrays having XOR of their elements as m.
Examples:
Input : arr[] = {4, 2, 2, 6, 4}, m = 6
Output : 4
Explanation : The subarrays having XOR of 
              their elements as 6 are {4, 2}, 
              {4, 2, 2, 6, 4}, {2, 2, 6},
               and {6}
An Efficient Solution solves the above problem in O(n) time. Let us call the XOR of all elements in the range [i+1, j] as A, in the range [0, i] as B, and in the range [0, j] as C. If we do XOR of B with C, the overlapping elements in [0, i] from B and C zero out and we get XOR of all elements in the range [i+1, j], i.e. A. Since A = B XOR C, we have B = A XOR C. Now, if we know the value of C and we take the value of A as m, we get the count of A as the count of all B satisfying this relation. Essentially, we get the count of all subarrays having XOR-sum m for each C. As we take sum of this count over all C, we get our answer.
1) Initialize ans as 0.
2) Compute xorArr, the prefix xor-sum array.
3) Create a map mp in which we store count of 
   all prefixes with XOR as a particular value. 
4) Traverse xorArr and for each element in xorArr
   (A) If m^xorArr[i] XOR exists in map, then 
       there is another previous prefix with 
       same XOR, i.e., there is a subarray ending
       at i with XOR equal to m. We add count of
       all such subarrays to result. 
   (B) If xorArr[i] is equal to m, increment ans by 1.
   (C) Increment count of elements having XOR-sum 
       xorArr[i] in map by 1.
5) Return ans.
long long subarrayXor(int arr[], int n, int m){    long long ans = 0; //Initialize answer to be returned    // Create a prefix xor-sum array such that    // xorArr[i] has value equal to XOR    // of all elements in arr[0 ..... i]    int *xorArr = new int[n];    // Create map that stores number of prefix array    // elements corresponding to a XOR value    unordered_map <int, int> mp;    // Initialize first element of prefix array    xorArr[0] = arr[0];    // Computing the prefix array.    for (int i = 1; i < n; i++)        xorArr[i] = xorArr[i-1] ^ arr[i];    // Calculate the answer    for (int i = 0; i < n; i++)    {        // Find XOR of current prefix with m.        int tmp = m ^ xorArr[i];        // If above XOR exists in map, then there        // is another previous prefix with same        // XOR, i.e., there is a subarray ending        // at i with XOR equal to m.        ans = ans + ((long long)mp[tmp]);        // If this subarray has XOR equal to m itself.        if (xorArr[i] == m)            ans++;        // Add the XOR of this subarray to the map        mp[xorArr[i]]++;    }    // Return total count of subarrays having XOR of    // elements as given value m    return ans;}A Simple Solution is to use two loops to go through all possible subarrays of arr[] and count the number of subarrays having XOR of their elements as m.
Read full article from Count the number of subarrays having a given XOR - GeeksforGeeks