Count all pairs with given XOR
Count the number of subarrays having a given XOR - GeeksforGeeks
A Simple Solution is to use two loops to go through all possible subarrays of arr[] and count the number of subarrays having XOR of their elements as m.
Read full article from Count the number of subarrays having a given XOR - GeeksforGeeks
Count the number of subarrays having a given XOR - GeeksforGeeks
Given an array of integers arr[] and a number m, count the number of subarrays having XOR of their elements as m.
Examples:
Input : arr[] = {4, 2, 2, 6, 4}, m = 6
Output : 4
Explanation : The subarrays having XOR of
their elements as 6 are {4, 2},
{4, 2, 2, 6, 4}, {2, 2, 6},
and {6}
An Efficient Solution solves the above problem in O(n) time. Let us call the XOR of all elements in the range [i+1, j] as A, in the range [0, i] as B, and in the range [0, j] as C. If we do XOR of B with C, the overlapping elements in [0, i] from B and C zero out and we get XOR of all elements in the range [i+1, j], i.e. A. Since A = B XOR C, we have B = A XOR C. Now, if we know the value of C and we take the value of A as m, we get the count of A as the count of all B satisfying this relation. Essentially, we get the count of all subarrays having XOR-sum m for each C. As we take sum of this count over all C, we get our answer.
1) Initialize ans as 0.
2) Compute xorArr, the prefix xor-sum array.
3) Create a map mp in which we store count of
all prefixes with XOR as a particular value.
4) Traverse xorArr and for each element in xorArr
(A) If m^xorArr[i] XOR exists in map, then
there is another previous prefix with
same XOR, i.e., there is a subarray ending
at i with XOR equal to m. We add count of
all such subarrays to result.
(B) If xorArr[i] is equal to m, increment ans by 1.
(C) Increment count of elements having XOR-sum
xorArr[i] in map by 1.
5) Return ans.
long long subarrayXor(int arr[], int n, int m){ long long ans = 0; //Initialize answer to be returned // Create a prefix xor-sum array such that // xorArr[i] has value equal to XOR // of all elements in arr[0 ..... i] int *xorArr = new int[n]; // Create map that stores number of prefix array // elements corresponding to a XOR value unordered_map <int, int> mp; // Initialize first element of prefix array xorArr[0] = arr[0]; // Computing the prefix array. for (int i = 1; i < n; i++) xorArr[i] = xorArr[i-1] ^ arr[i]; // Calculate the answer for (int i = 0; i < n; i++) { // Find XOR of current prefix with m. int tmp = m ^ xorArr[i]; // If above XOR exists in map, then there // is another previous prefix with same // XOR, i.e., there is a subarray ending // at i with XOR equal to m. ans = ans + ((long long)mp[tmp]); // If this subarray has XOR equal to m itself. if (xorArr[i] == m) ans++; // Add the XOR of this subarray to the map mp[xorArr[i]]++; } // Return total count of subarrays having XOR of // elements as given value m return ans;}A Simple Solution is to use two loops to go through all possible subarrays of arr[] and count the number of subarrays having XOR of their elements as m.
Read full article from Count the number of subarrays having a given XOR - GeeksforGeeks