SPOJ-SQRBR: Square Brackets


https://yujia.io/blog/2015/10/31/SPOJ-SQRBR-Square%20Brackets/
We are given:
  • a positive integer n,
  • an integer k1kn,
  • an increasing sequence of k integers 0<s1<s2<<sk2n.
And the output is the number of proper bracket expressions of length 2n with opening brackets appering in positions s1,s2,,sk.

I solve this problem by using dynamic programming. It’s not quite straighforward to come up with this idea. In dynamic programming, we are always trying to decompose the current state into some state that we have already solved before. Here I focus on the following function:
Opt(i,j)=the number of valid ways of filling the first i positions with there are j more “[“ than “]”
Here valid means the way of filling the first i elements should be the prefix of some valid matching. So by this definition, our goal is to calculate Opt(2n,0).

First we come up with the base case, if i=1 we have to put “[“ at the first place. That’s the only valid choice. If we put “]” at the first place then it won’t be the prefix of any valid matching. For i>1 the value of OPT(i,0) is exactly the value of OPT(i1,1). So we set
OPT(1,j)=0 (if j1) or 1 (if j=1)
OPT(i,0)=OPT(i1,1) , if i>1

Now we need to find the relation on OPT(i,j). There are two cases, if i is in the sequence, which means we have to put “[“ in position i, then OPT(i,j) should equal to OPT(i1,j1). If i is not in the sequence, then we can either put “[“ or “]” in position i. So OPT(i,j) should equal to the sum of OPT(i1,j1) and OPT(i1,j+1). Note that j+1 cannot exceed n because there are at most n more “[“ than “]”. Also we can set OPT(i,n+1)=0. Formally, if i is in the sequence
OPT(i,j)=OPT(i1,j1)
If i is not in the sequence


OPT(i,j)=OPT(i1,j1)+OPT(i1,j+1)

I construct the following table. By the base case, we can calculate the frist row. And then by the recurrent relations, we calculate the value of OPT(i,j) row by row, from left to right. The time complexity is O(n2) and the space complexity is O(n) because we only need the previous row to calculate the current row. We don’t need to store the whole table.
int main(){
 int T;
 cin >> T;
 int result[10];
 for(int t = 0; t < T; t++){
  int s[19];
  int n,k;
  cin >> n >> k;
  for(int i = 0; i < k; i++)
   cin >> s[i];
  int Previous[20];
        int Current[20];
  for(int j = 0; j <= n; j++)
   Previous[j] = 0;
  Previous[1] = 1;
  int position = (s[0] == 1) ? k-1 : k;
  for(int i = 2; i <= 2*n; i++){
   if((position > 0) && (s[k-position] == i)){
    position--;
    Current[0] = 0;
    for(int j = 1; j <= n; j++)
     Current[j] = Previous[j-1];
   }else{
    Current[0] = Previous[1];
    for(int j = 1; j < n; j++)
     Current[j] = Previous[j-1] + Previous[j+1];
    Current[n] = Previous[n-1];
   }
            for(int j = 0; j <= n; j++)
                Previous[j] = Current[j];
  }
  result[t] = Previous[0];
 }
 for(int t = 0; t < T; t++)
  cout << result[t] << endl;
}
http://www.cnblogs.com/huangfeihome/p/3420100.html
  动态规划。
  设f[i][j]表示前i个位置在合法情况下缺少j个右括号的方案数。
  转移方程为:
  f[i][j] = f[i-1][j-1] (第i个地方必须为'[')
  f[i][j] = f[i-1][j-1] + f[i-1][j+1] (分第i个位置放左括号和右括号的情况)
  写的第一份代码不是很严谨,j-1变为负值,但spoj判ac了。
 3 #define N 205
 4 
 5 int f[N][N], n, k;
 6 bool h[N];
 7 
 8 int main()
 9 {
10     int t, d;
11     scanf("%d", &t);
12     while(t--)
13     {
14         scanf("%d%d", &n, &k);
15         memset(h, 0, sizeof h);
16         memset(f, 0, sizeof f);
17         f[0][0] = 1;
18         for(int i = 1; i <= k; i++)
19         {
20             scanf("%d", &d);
21             h[d] = 1;
22         }
23         for(int i = 1; i <= 2 * n; i++)
24         {
25             for(int j = 0; j <= 2 * n; j++)
26             {
27                 if(h[i])
28                 {   
29                     if(j != 0)
30                         f[i][j] = f[i-1][j-1];
31                     else
32                         f[i][j] =  0;
33                 }
34                 else
35                 {
36                     if(j != 0)
37                         f[i][j] = f[i-1][j-1] + f[i-1][j+1];
38                     else
39                         f[i][j] = f[i-1][j+1];
40                 }
41             }
42         }
43         printf("%d\n", f[2*n][0]);
44     }
45     return 0;
46 }

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts