LeetCode LeetCode 396 - Rotate Function


http://bookshadow.com/weblog/2016/09/11/leetcode-rotate-function/
Given an array of integers A and let n to be its length.
Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1].
Calculate the maximum value of F(0), F(1), ..., F(n-1).
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
https://www.cnblogs.com/grandyang/p/5869791.html
博主写了个O(n2)的方法并不能通过OJ的大数据集合,后来网上看大家的解法都是很好的找到了规律,可以在O(n)时间内完成。现在想想找规律的能力真的挺重要,比如之前那道Elimination Game也靠找规律,而用傻方法肯定超时,然后博主发现自己脑子不够活,很难想到正确的方法,说出来全是泪啊T.T。好了,来解题吧,我们为了找规律,先把具体的数字抽象为A,B,C,D,那么我们可以得到:
F(0) = 0A + 1B + 2C +3D
F(1) = 0D + 1A + 2B +3C
F(2) = 0C + 1D + 2A +3B
F(3) = 0B + 1C + 2D +3A
那么,我们通过仔细观察,我们可以得出下面的规律:
sum = 1A + 1B + 1C + 1D
F(1) = F(0) + sum - 4D
F(2) = F(1) + sum - 4C
F(3) = F(2) + sum - 4B
那么我们就找到规律了, F(i) = F(i-1) + sum - n*A[n-i],可以写出代码如下

https://discuss.leetcode.com/topic/58459/java-o-n-solution-with-explanation
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1]
       = 0 * Bk[1] + 1 * Bk[2] + ... + (n-2) * Bk[n-1] + (n-1) * Bk[0]
Then,
F(k) - F(k-1) = Bk[1] + Bk[2] + ... + Bk[n-1] + (1-n)Bk[0]
              = (Bk[0] + ... + Bk[n-1]) - nBk[0]
              = sum - nBk[0]
Thus,
F(k) = F(k-1) + sum - nBk[0]
What is Bk[0]?
k = 0; B[0] = A[0];
k = 1; B[0] = A[len-1];
k = 2; B[0] = A[len-2];
...
int allSum = 0;
int len = A.length;
int F = 0;
for (int i = 0; i < len; i++) {
    F += i * A[i];
    allSum += A[i];
}
int max = F;
for (int i = len - 1; i >= 1; i--) {
    F = F + allSum - len * A[i];
    max = Math.max(F, max);
}
return max;   
I think the above deductions may have some flaws. Because we cannot get the F(0) from F(k). Personally I would use only
the base case, k = 0
F(0) = 0 * Bk[0] + 1 * Bk[1] + ... + (n - 1) * Bk[n - 1]
and the case when k > 0 and k < n
F(k) = 0 * Bk[n - k] + 1 * Bk[n - k + 1] + ... + (n - 1) * Bk[n - (k + 1)]
For those who got confused why we will start from i = len - 1:
F(1) = F(0) + sum - n * A[n - 1], here n = len so that A[n - 1] == A[i]
F(2) = F(1) + sum - n * A[n - 2]
...
F(k) = F(k - 1) + sum - n * A[n - k]
Why we will end if i < 1? It's because we deduced k < n and k > 0. So that it's obviousn - k > 0, which means i > 0.
https://discuss.leetcode.com/topic/58616/java-solution-o-n-with-non-mathametical-explaination
    public int maxRotateFunction(int[] A) {
        int sumA = 0; int prevRotationSum = 0;
        for (int i = 0; i < A.length; i++) {
            sumA += A[i];
            prevRotationSum += i * A[i];
        }
        int max = prevRotationSum;

        for (int i = A.length -1; i > 0; i--){
            prevRotationSum += sumA - A.length * A[i];
            max = Math.max(prevRotationSum, max);
        }
        return max;
    }
https://discuss.leetcode.com/topic/58389/java-solution
This is essentially a Math problem.
Consider the array [ A, B, C, D ] with very simple coefficients as following:
f(0) = 0A + 1B + 2C + 3D
f(1) = 3A + 0B + 1C + 2D
f(2) = 2A + 3B + 0C + 1D
f(3) = 1A + 2B + 3C + 0D
We can see from above that:
f(0) -> f(1) -> f(2) -> f(3)
f(i) = f(i - 1) - SUM(A -> B) + N * A[i - 1]
    public int maxRotateFunction(int[] A) {
        int n = A.length;
 int sum = 0;
 int candidate = 0;

 for (int i = 0; i < n; i++) {
  sum += A[i];
  candidate += A[i] * i;
 }
 int best = candidate;

 for (int i = 1; i < n; i++) {
  candidate = candidate - sum + A[i - 1] * n;
  best = Math.max(best, candidate);
 }
 return best;
    }
https://discuss.leetcode.com/topic/58302/java-solution
 public int maxRotateFunction(int[] A) {
  int n = A.length;
  int sum = 0;
  int candidate = 0;

  for (int i = 0; i < n; i++) {
   sum += A[i];
   candidate += A[i] * i;
  }
  int best = candidate;

  for (int i = n - 1; i > 0; i--) {
   candidate = candidate + sum - A[i] * n;
   best = Math.max(best, candidate);
  }
  return best;
 }

假设数组A的长度为5,其旋转函数F的系数向量如下所示:
0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3
用每一行系数与其上一行做差,差值恰好为sum(A) + size * A[size - x],其中x为行数
因此,通过一次遍历即可求出F(0), F(1), ..., F(n-1)的最大值。
def maxRotateFunction(self, A): """ :type A: List[int] :rtype: int """ size = len(A) sums = sum(A) sumn = sum(x * n for x, n in enumerate(A)) ans = sumn for x in range(size - 1, 0, -1): sumn += sums - size * A[x] ans = max(ans, sumn) return ans


Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts