Count Distinct Subsequences - GeeksforGeeks


Count Distinct Subsequences - GeeksforGeeks
Given a string, find count of distinct subsequences of it.
Input  : str = "gfg"
Output : 7
The seven distinct subsequences are "", "g", "f",
"gf", "fg", "gg" and "gfg" 

Input  : str = "ggg"
Output : 4
The four distinct subsequences are "", "g", "gg"
and "ggg" 

The problem of counting distinct subsequences is easy if all characters of input string are distinct. The count is equal to nC0 + nC1 + nC2 + … nCn = 2n.
How to count distinct subsequences when there can be repetition in input string?
A Simple Solution to count distinct subsequences in a string with duplicates is to generate all subsequences. For every subsequence, store it in a hash table if it doesn’t exist already. Time complexity of this solution is exponential and it requires exponential extra space.
An Efficient Solution doesn’t require generation of subsequences.
Let countSub(n) be count of subsequences of 
first n characters in input string. We can
recursively write it as below. 

countSub(n) = 2*Count(n-1) - Repetition

If current character, i.e., str[n-1] of str has
not appeared before, then 
   Repetition = 0

Else:
   Repetition  =  Count(m)
   Here m is index of previous occurrence of
   current character. We basically remove all
   counts ending with previous occurrence of
   current character.
How does this work?
If there are no repetitions, then count becomes double of count for n-1 because we get count(n-1) more subsequences by adding current character at the end of all subsequences possible with n-1 length.
If there repetitions, then we find count of all distinct subsequences ending with previous occurrence. This count can be obtained be recursively calling for index of previous occurrence.
Since above recurrence has overlapping subproblems, we can solve it using Dynamic Programming.
const int MAX_CHAR = 256;
// Returns count of distinct sunsequences of str.
int countSub(string str)
{
    // Create an array to store index
    // of last
    vector<int> last(MAX_CHAR, -1);
    // Length of input string
    int n = str.length();
    // dp[i] is going to store count of distinct
    // subsequences of length i.
    int dp[n+1];
    // Empty substring has only one subsequence
    dp[0] = 1;
    // Traverse through all lengths from 1 to n.
    for (int i=1; i<=n; i++)
    {
        // Number of subsequences with substring
        // str[0..i-1]
        dp[i] = 2*dp[i-1];
        // If current character has appeared
        // before, then remove all subsequences
        // ending with previous occurrence.
        if (last[str[i-1]] != -1)
            dp[i] = dp[i] - dp[last[str[i-1]]];
        // Mark occurrence of current character
        last[str[i-1]] = (i-1);
    }
    return dp[n];
}
Read full article from Count Distinct Subsequences - GeeksforGeeks

Count permutations that produce positive result - GeeksforGeeks


Count permutations that produce positive result - GeeksforGeeks
Given an array of digits of length n > 1, digits lies within range 0 to 9. We perform sequence of below three operations until we are done with all digits
  1. Select starting two digits and add ( + )
  2. Then next digit is subtracted ( – ) from result of above step.
  3. The result of above step is multiplied ( X ) with next digit.
We perform above sequence of operations linearly with remaining digits.
The task is to find how many permutations of given array that produce positive result after above operations.
For Example, consider input number[] = {1, 2, 3, 4, 5}. Let us consider a permutation 21345 to demonstrate sequence of operations.
  1. Add first two digits, result = 2+1 = 3
  2. Subtract next digit, result=result-3= 3-3 = 0
  3. Multiply next digit, result=result*4= 0*4 = 0
  4. Add next digit, result = result+5 = 0+5 = 5
  5. result = 5 which is positive so increment count by one
int countPositivePermutations(int number[], int n)
{
    // First sort the array so that we get all permutations
    // one by one using next_permutation.
    sort(number, number+n);
 
    // Initialize result (count of permutations with positive
    // result)
    int count = 0;
 
    // Iterate for all permutation possible and do operation
    // sequentially in each permutation
    do
    {
        // Stores result for current permutation. First we
        // have to select first two digits and add them
        int curr_result = number[0] + number[1];
 
        // flag that tells what operation we are going to
        // perform
        // operation = 0 ---> addition operation ( + )
        // operation = 1 ---> subtraction operation ( - )
        // operation = 0 ---> multiplication operation ( X )
        // first sort the array of digits to generate all
        // permutation in sorted manner
        int operation = 1;
 
        // traverse all digits
        for (int i=2; i<n; i++)
        {
            // sequentially perform + , - , X operation
            switch (operation)
            {
            case 0:
                curr_result += number[i];
                break;
            case 1:
                curr_result -= number[i];
                break;
            case 2:
                curr_result *= number[i];
                break;
            }
 
            // next operation (decides case of switch)
            operation = (operation + 1) % 3;
        }
 
        // result is positive then increment count by one
        if (curr_result > 0)
            count++;
 
    // generate next greater permutation until it is
    // possible
    } while(next_permutation(number, number+n));
 
    return count;
}
Read full article from Count permutations that produce positive result - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts