Merge two binary search trees - PrismoSkills


Merge two binary search trees - PrismoSkills
Solution 1:
Store inorder traversal of both trees in separate arrays -> O(m+n)
Merge two sorted arrays obtained above -> O(m+n)
Construct balanced BST from this merged array -> O(m+n)

Total order -> 3*O(m+n)
Total space complexity -> 2*O(m+n)
struct node* mergeTrees(struct node *root1, struct node *root2, int m, int n)
{
    // Store inorder traversal of first tree in an array arr1[]
    int *arr1 = new int[m];
    int i = 0;
    storeInorder(root1, arr1, &i);
 
    // Store inorder traversal of second tree in another array arr2[]
    int *arr2 = new int[n];
    int j = 0;
    storeInorder(root2, arr2, &j);
 
    // Merge the two sorted array into one
    int *mergedArr = merge(arr1, arr2, m, n);
 
    // Construct a tree from the merged array and return root of the tree
    return sortedArrayToBST (mergedArr, 0, m+n-1);
}
void storeInorder(struct node* node, int inorder[], int *index_ptr)
{
    if (node == NULL)
        return;
 
    /* first recur on left child */
    storeInorder(node->left, inorder, index_ptr);
 
    inorder[*index_ptr] = node->data;
    (*index_ptr)++;  // increase index for next entry
 
    /* now recur on right child */
    storeInorder(node->right, inorder, index_ptr);
}
/* A function that constructs Balanced Binary Search Tree from a sorted array
struct node* sortedArrayToBST(int arr[], int start, int end)
{
    /* Base Case */
    if (start > end)
      return NULL;
 
    /* Get the middle element and make it root */
    int mid = (start + end)/2;
    struct node *root = newNode(arr[mid]);
 
    /* Recursively construct the left subtree and make it
       left child of root */
    root->left =  sortedArrayToBST(arr, start, mid-1);
 
    /* Recursively construct the right subtree and make it
       right child of root */
    root->right = sortedArrayToBST(arr, mid+1, end);
 
    return root;
}
Solution 2:
To reduce the extra space required, a better solution in O(m+n) time would be as follows:
1) Convert each BST into a sorted double linked list - O(m) + O(n) time
2) Merge the 2 SDLLs - O(m+n) time
3) Convert the resulting final SDLL into a BST - O(m+n) time

Total order -> 3*O(m+n)
Total space complexity -> 0
Method 3 (In-Place Merge using DLL)
We can use a Doubly Linked List to merge trees in place. Following are the steps.
1) Convert the given two Binary Search Trees into doubly linked list in place (Refer this post for this step).
2) Merge the two sorted Linked Lists (Refer this post for this step).
3) Build a Balanced Binary Search Tree from the merged list created in step 2. (Refer this post for this step)
Time complexity of this method is also O(m+n) and this method does conversion in place.

Given two Binary Search Trees(BST), print the elements of both BSTs in sorted form.
Time Complexity: O(m+n)
Auxiliary Space: O(height of the first tree + height of the second tree)
The idea is to use iterative inorder traversal. We use two auxiliary stacks for two BSTs. Since we need to print the elements in sorted form, whenever we get a smaller element from any of the trees, we print it. If the element is greater, then we push it back to stack for the next iteration.
// The function to print data of two BSTs in sorted order
void  merge(struct node *root1, struct node *root2)
{
    // s1 is stack to hold nodes of first BST
    struct snode *s1 = NULL;
 
    // Current node of first BST
    struct node  *current1 = root1;
 
    // s2 is stack to hold nodes of second BST
    struct snode *s2 = NULL;
 
    // Current node of second BST
    struct node  *current2 = root2;
 
    // If first BST is empty, then output is inorder
    // traversal of second BST
    if (root1 == NULL)
    {
        inorder(root2);
        return;
    }
    // If second BST is empty, then output is inorder
    // traversal of first BST
    if (root2 == NULL)
    {
        inorder(root1);
        return ;
    }
 
    // Run the loop while there are nodes not yet printed.
    // The nodes may be in stack(explored, but not printed)
    // or may be not yet explored
    while (current1 != NULL || !isEmpty(s1) ||
          current2 != NULL || !isEmpty(s2))
    {
        // Following steps follow iterative Inorder Traversal
        if (current1 != NULL || current2 != NULL )
        {
            // Reach the leftmost node of both BSTs and push ancestors of
            // leftmost nodes to stack s1 and s2 respectively
            if (current1 != NULL)
            {
                push(&s1, current1);
                current1 = current1->left;
            }
            if (current2 != NULL)
            {
                push(&s2, current2);
                current2 = current2->left;
            }
 
        }
        else
        {
            // If we reach a NULL node and either of the stacks is empty,
            // then one tree is exhausted, ptint the other tree
            if (isEmpty(s1))
            {
                while (!isEmpty(s2))
                {
                    current2 = pop (&s2);
                    current2->left = NULL;
                    inorder(current2);
                }
                return ;
            }
            if (isEmpty(s2))
            {
                while (!isEmpty(s1))
                {
                    current1 = pop (&s1);
                    current1->left = NULL;
                    inorder(current1);
                }
                return ;
            }
 
            // Pop an element from both stacks and compare the
            // popped elements
            current1 = pop(&s1);
            current2 = pop(&s2);
 
            // If element of first tree is smaller, then print it
            // and push the right subtree. If the element is larger,
            // then we push it back to the corresponding stack.
            if (current1->data < current2->data)
            {
                printf("%d ", current1->data);
                current1 = current1->right;
                push(&s2, current2);
                current2 = NULL;
            }
            else
            {
                printf("%d ", current2->data);
                current2 = current2->right;
                push(&s1, current1);
                current1 = NULL;
            }
        }
    }
Method 1 (Insert elements of first tree to second) 
The value of this expression will be between mLogn and mLog(m+n-1).

http://dzmitryhuba.blogspot.com/2011/03/merge-binary-search-trees-in-place.html
The simplest solution to do this is to take every element of one tree and insert it into the other tree. This may be really inefficient as it depends on how well target tree is balanced and it doesn’t take into account structure of the source tree.
// Converts tree to sorted singly linked list and appends it
// to the head of the existing list and returns new head.
// Left pointers are used as next pointer to form singly
// linked list thus basically forming degenerate tree of
// single left oriented branch. Head of the list points
// to the node with greatest element.
static TreeNode<T> ToSortedList<T>(TreeNode<T> tree, TreeNode<T> head)
{
    if (tree == null)
        // Nothing to convert and append
        return head;
    // Do conversion using in order traversal
    // Convert first left sub-tree and append it to
    // existing list
    head = ToSortedList(tree.Left, head);
    // Append root to the list and use it as new head
    tree.Left = head;
    // Convert right sub-tree and append it to list
    // already containing left sub-tree and root
    return ToSortedList(tree.Right, tree);
}

Read full article from Merge two binary search trees - PrismoSkills

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts