Check if a binary tree is subtree of another binary tree | Set 2 - GeeksforGeeks
The idea is based on the fact that inorder and preorder/postorder uniquely identify a binary tree. Tree S is a subtree of T if both inorder and preorder traversals of S arew substrings of inorder and preorder traversals of T respectively.
Following are detailed steps.
1) Find inorder and preorder traversals of T, store them in two auxiliary arrays inT[] and preT[].
2) Find inorder and preorder traversals of S, store them in two auxiliary arrays inS[] and preS[].
3) If inS[] is a subarray of inT[] and preS[] is a subarray preT[], then S is a subtree of T. Else not.
We can also use postorder traversal in place of preorder in the above algorithm.
Traverse the tree T in preorder fashion. For every visited node in the traversal, see if the subtree rooted with this node is identical to S.
Read full article from Check if a binary tree is subtree of another binary tree | Set 2 - GeeksforGeeks
The idea is based on the fact that inorder and preorder/postorder uniquely identify a binary tree. Tree S is a subtree of T if both inorder and preorder traversals of S arew substrings of inorder and preorder traversals of T respectively.
Following are detailed steps.
1) Find inorder and preorder traversals of T, store them in two auxiliary arrays inT[] and preT[].
2) Find inorder and preorder traversals of S, store them in two auxiliary arrays inS[] and preS[].
3) If inS[] is a subarray of inT[] and preS[] is a subarray preT[], then S is a subtree of T. Else not.
We can also use postorder traversal in place of preorder in the above algorithm.
The above algorithm doesn't work for cases where a tree is present in another tree, but not as a subtree.The above algorithm can be extended to handle such cases by adding a special character whenever we encounter NULL in inorder and preorder traversals.
Time Complexity: Inorder and Preorder traversals of Binary Tree take O(n) time. The function strstr()can also be implemented in O(n) time using KMP string matching algorithm.
Auxiliary Space: O(n)
Check more from http://massivealgorithms.blogspot.com/2014/07/check-if-binary-tree-is-subtree-of.html
http://www.geeksforgeeks.org/check-if-a-binary-tree-is-subtree-of-another-binary-tree/class
Node {
char
data;
Node left, right;
Node(
char
item) {
data = item;
left = right =
null
;
}
}
class
Passing {
int
i;
int
m =
0
;
int
n =
0
;
}
class
BinaryTree {
static
Node root;
Passing p =
new
Passing();
String strstr(String haystack, String needle) {
if
(haystack ==
null
|| needle ==
null
) {
return
null
;
}
int
hLength = haystack.length();
int
nLength = needle.length();
if
(hLength < nLength) {
return
null
;
}
if
(nLength ==
0
) {
return
haystack;
}
for
(
int
i =
0
; i <= hLength - nLength; i++) {
if
(haystack.charAt(i) == needle.charAt(
0
)) {
int
j =
0
;
for
(; j < nLength; j++) {
if
(haystack.charAt(i + j) != needle.charAt(j)) {
break
;
}
}
if
(j == nLength) {
return
haystack.substring(i);
}
}
}
return
null
;
}
// A utility function to store inorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void
storeInorder(Node node,
char
arr[], Passing i) {
if
(node ==
null
) {
arr[i.i++] =
'$'
;
return
;
}
storeInorder(node.left, arr, i);
arr[i.i++] = node.data;
storeInorder(node.right, arr, i);
}
// A utility function to store preorder traversal of tree rooted
// with root in an array arr[]. Note that i is passed as reference
void
storePreOrder(Node node,
char
arr[], Passing i) {
if
(node ==
null
) {
arr[i.i++] =
'$'
;
return
;
}
arr[i.i++] = node.data;
storePreOrder(node.left, arr, i);
storePreOrder(node.right, arr, i);
}
/* This function returns true if S is a subtree of T, otherwise false */
boolean
isSubtree(Node T, Node S) {
/* base cases */
if
(S ==
null
) {
return
true
;
}
if
(T ==
null
) {
return
false
;
}
// Store Inorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
char
inT[] =
new
char
[
100
];
String op1 = String.valueOf(inT);
char
inS[] =
new
char
[
100
];
String op2 = String.valueOf(inS);
storeInorder(T, inT, p);
storeInorder(S, inS, p);
inT[p.m] =
'\0'
;
inS[p.m] =
'\0'
;
// If inS[] is not a substring of preS[], return false
if
(strstr(op1, op2) !=
null
) {
return
false
;
}
// Store Preorder traversals of T and S in inT[0..m-1]
// and inS[0..n-1] respectively
p.m =
0
;
p.n =
0
;
char
preT[] =
new
char
[
100
];
char
preS[] =
new
char
[
100
];
String op3 = String.valueOf(preT);
String op4 = String.valueOf(preS);
storePreOrder(T, preT, p);
storePreOrder(S, preS, p);
preT[p.m] =
'\0'
;
preS[p.n] =
'\0'
;
// If inS[] is not a substring of preS[], return false
// Else return true
return
(strstr(op3, op4) !=
null
);
}
}
Traverse the tree T in preorder fashion. For every visited node in the traversal, see if the subtree rooted with this node is identical to S.
Time worst case complexity of above solution is O(mn) where m and n are number of nodes in given two trees.
/* A utility function to check whether trees with roots as root1 and
root2 are identical or not */
boolean
areIdentical(Node root1, Node root2)
{
/* base cases */
if
(root1 ==
null
&& root2 ==
null
)
return
true
;
if
(root1 ==
null
|| root2 ==
null
)
return
false
;
/* Check if the data of both roots is same and data of left and right
subtrees are also same */
return
(root1.data == root2.data
&& areIdentical(root1.left, root2.left)
&& areIdentical(root1.right, root2.right));
}
/* This function returns true if S is a subtree of T, otherwise false */
boolean
isSubtree(Node T, Node S)
{
/* base cases */
if
(S ==
null
)
return
true
;
if
(T ==
null
)
return
false
;
/* Check the tree with root as current node */
if
(areIdentical(T, S))
return
true
;
/* If the tree with root as current node doesn't match then
try left and right subtrees one by one */
return
isSubtree(T.left, S)
|| isSubtree(T.right, S);
}