https://www.hrwhisper.me/leetcode-kth-smallest-element-sorted-matrix/
https://discuss.leetcode.com/topic/52865/my-solution-using-binary-search-in-c
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth smallest element in the matrix.
Note that it is the kth smallest element in the sorted order, not the kth distinct element.
Example:
matrix = [ [ 1, 5, 9], [10, 11, 13], [12, 13, 15] ], k = 8, return 13.
Note:
You may assume k is always valid, 1 ≤ k ≤ n2.
You may assume k is always valid, 1 ≤ k ≤ n2.
X. Binary search
Time complexity: O(nlogn*log(max – min))
http://hehejun.blogspot.com/2017/11/leetcodekth-smallest-element-in-sorted.html
这道题和Find K Pairs with Smallest Sum是一样的,Matrix都是自上而下从左到右sort的,区别就是这道题直接把Matrix给我们了,而那道题是隐形的条件。我们可以用和那道题一样的解法,就是把m * n的array看为m个长度为n的sorted list,然后找到第k个。但是这道题我们有常数空间的解法,假设min和max分别为array的最大值和最小值,因为我们知道答案一定在min和max之间,所以我们可以用值域上的二分。也就是每次我们选定mid值,统计所有小于等于mid的数的数量count,如果count < k说明答案在右半边,lo = mid + 1; 如果count >= k,说明答案在左半边,hi = mid。用v代表max和min的差值,时间复杂度T(v) = T(v / 2) + m + n,考虑m + n一般小于v, 时间复杂度O(v * log v)
https://www.hrwhisper.me/leetcode-kth-smallest-element-sorted-matrix/
上面的解法还可以进一步优化到O(nlgX),其中X为最大值和最小值的差值,我们并不用对每一行都做二分搜索法,我们注意到每列也是有序的,我们可以利用这个性质,从数组的左下角开始查找,如果比目标值小,我们就向右移一位,而且我们知道当前列的当前位置的上面所有的数字都小于目标值,那么cnt += i+1,反之则向上移一位,这样我们也能算出cnt的值。其余部分跟上面的方法相同
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/85193/Binary-Search-Heap-and-Sorting-comparison-with-concise-code-and-1-liners-Python-72-ms
http://hehejun.blogspot.com/2017/11/leetcodekth-smallest-element-in-sorted.html
这道题和Find K Pairs with Smallest Sum是一样的,Matrix都是自上而下从左到右sort的,区别就是这道题直接把Matrix给我们了,而那道题是隐形的条件。我们可以用和那道题一样的解法,就是把m * n的array看为m个长度为n的sorted list,然后找到第k个。但是这道题我们有常数空间的解法,假设min和max分别为array的最大值和最小值,因为我们知道答案一定在min和max之间,所以我们可以用值域上的二分。也就是每次我们选定mid值,统计所有小于等于mid的数的数量count,如果count < k说明答案在右半边,lo = mid + 1; 如果count >= k,说明答案在左半边,hi = mid。用v代表max和min的差值,时间复杂度T(v) = T(v / 2) + m + n,考虑m + n一般小于v, 时间复杂度O(v * log v)
https://www.hrwhisper.me/leetcode-kth-smallest-element-sorted-matrix/
上面的解法还可以进一步优化到O(nlgX),其中X为最大值和最小值的差值,我们并不用对每一行都做二分搜索法,我们注意到每列也是有序的,我们可以利用这个性质,从数组的左下角开始查找,如果比目标值小,我们就向右移一位,而且我们知道当前列的当前位置的上面所有的数字都小于目标值,那么cnt += i+1,反之则向上移一位,这样我们也能算出cnt的值。其余部分跟上面的方法相同
而下面的解法利用了列有序的性质,并将复杂度降到了O(nlogX) 其中X = max – min
我们仍采用猜测法,设L = min(matrix) R= max(matrix) , mid =( L + R ) / 2 ,mid为我们猜测的答案。
对于mid,我们不必再所有的行或列种执行二分查找,我们可以从左下角出发,若matrix[i][j] <= mid,则下一次查询在右边(j++),并且,该列的所有元素均比mid小,因此可以cnt += (i+1)
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/85193/Binary-Search-Heap-and-Sorting-comparison-with-concise-code-and-1-liners-Python-72-ms
The time complexity is O(n * log(n) * log(N)), where N is the search space that ranges from the smallest element to the biggest element. You can argue that int implies N = 2^32, so log(N) is constant. In a way, this is an O(n * log(n)) solution.
The space complexity is constant.
I thought this idea was weird for a while. Then I noticed the previous problem 377. Combination Sum IV is pretty much doing the same thing, so this idea may actually be intended.
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/85173/Share-my-thoughts-and-Clean-Java-Code
The key point for any binary search is to figure out the "Search Space". For me, I think there are two kind of "Search Space" -- index and range(the range from the smallest number to the biggest number). Most usually, when the array is sorted in one direction, we can use index as "search space", when the array is unsorted and we are going to find a specific number, we can use "range".
Let me give you two examples of these two "search space"
- index -- A bunch of examples -- https://leetcode.com/problems/find-minimum-in-rotated-sorted-array/ ( the array is sorted)
- range -- https://leetcode.com/problems/find-the-duplicate-number/ (Unsorted Array)
The reason why we did not use index as "search space" for this problem is the matrix is sorted in two directions, we can not find a linear way to map the number and its index.
The count function will return the number of elements that smaller or equal to the given value.
That is, in case of all unqiue, if given the kth number, the count will return k instead of k - 1.
That is, in case of all unqiue, if given the kth number, the count will return k instead of k - 1.
The binary search part will return the smallest number that has k numbers smaller or equal to itself.
Main loop is binary search of max - min.
Swap from left-bottom to right-top can get count <= mid in O(n) time instead of O(nlogn), total complexity will be O(nlogm) while m = max - min.
Swap from left-bottom to right-top can get count <= mid in O(n) time instead of O(nlogn), total complexity will be O(nlogm) while m = max - min.
public int kthSmallest(int[][] matrix, int k) {
int row = matrix.length, col = matrix[0].length;
int left = matrix[0][0], right = matrix[row - 1][col - 1];
while (left < right) {
int mid = left + (right - left) / 2;
if (count(matrix, mid) <= k - 1) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
}
int count(int[][] matrix, int val) {
int row = matrix.length, col = matrix[0].length;
int cnt = 0;
for (int i = 0, j = col - 1; i < row && j >= 0;) {
if (matrix[i][j] > val) j--;
else {
cnt += j + 1;
i++;
}
}
return cnt;
}
public int kthSmallest(int[][] matrix, int k) {
int n = matrix.length;
int lo = matrix[0][0], hi = matrix[n - 1][n - 1];
while (lo <= hi) {
int mid = lo + (hi - lo) / 2;
int count = getLessEqual(matrix, mid);
if (count < k) lo = mid + 1;
else hi = mid - 1;
}
return lo;
}
private int getLessEqual(int[][] matrix, int val) {
int res = 0;
int n = matrix.length, i = n - 1, j = 0;
while (i >= 0 && j < n) {
if (matrix[i][j] > val) i--;
else {
res += i + 1;
j++;
}
}
return res;
}
而下面的解法利用了列有序的性质,并将复杂度降到了O(nlogX) 其中X = max – min
我们仍采用猜测法,设L = min(matrix) R= max(matrix) , mid =( L + R ) / 2 ,mid为我们猜测的答案。
对于mid,我们不必再所有的行或列种执行二分查找,我们可以从左下角出发,若matrix[i][j] <= mid,则下一次查询在右边(j++),并且,该列的所有元素均比mid小,因此可以cnt += (i+1)
对于matrix[i][j] > mid,则 i – – 。
public int kthSmallest(int[][] matrix, int k) {
int n = matrix.length;
int L = matrix[0][0], R = matrix[n - 1][n - 1];
while (L < R) {
int mid = L + ((R - L) >> 1);
int temp = search_lower_than_mid(matrix, n, mid);
if (temp < k) L = mid + 1;
else R = mid;
}
return L;
}
private int search_lower_than_mid(int[][] matrix,int n,int x) {
int i = n - 1, j = 0, cnt = 0;
while (i >= 0 && j < n) {
if (matrix[i][j] <= x) {
j++;
cnt += i + 1;
}
else i--;
}
return cnt;
}
https://discuss.leetcode.com/topic/52865/my-solution-using-binary-search-in-c
The time complexity is O(n * log(n) * log(N)), where N is the search space that ranges from the smallest element to the biggest element.
You can argue that
int
implies N = 2^32, so log(N) is constant. I guess this is where O(n * log(n)) comes from.
I thought this idea was weird for a while. Then I noticed the previous problem 377. Combination Sum IV is pretty much doing the same thing, so this idea may actually be intended.
int kthSmallest(vector<vector<int>>& matrix, int k) {
int n = matrix.size();
long long l = INT_MIN, r = INT_MAX, mid;
while(l < r){
mid = (l + r) >> 1;
int kth = 0;
for(int i = 0; i < n; i++){
for(int j = 0; j < n && matrix[i][j] <= mid; j++){
kth++;
}
}
if(kth < k) l = mid + 1;
else r = mid;
}
return l;
}
X. Priority Queue
2. Heap solution gives me 176 ms. The time complexity is O(k * log n), so the worst-case and average-case time complexity is O(n^2 * log n). Space complexity is O(n).
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/85173/Share-my-thoughts-and-Clean-Java-Code
https://leetcode.com/problems/kth-smallest-element-in-a-sorted-matrix/discuss/85173/Share-my-thoughts-and-Clean-Java-Code
- Build a minHeap of elements from the first row.
- Do the following operations k-1 times :
Every time when you poll out the root(Top Element in Heap), you need to know the row number and column number of that element(so we can create a tuple class here), replace that root with the next element from the same column.
After you finish this problem, thinks more :
- For this question, you can also build a min Heap from the first column, and do the similar operations as above.(Replace the root with the next element from the same row)
- What is more, this problem is exact the same with Leetcode373 Find K Pairs with Smallest Sums, I use the same code which beats 96.42%, after you solve this problem, you can check with this link:
https://discuss.leetcode.com/topic/52953/share-my-solution-which-beat-96-42
public int kthSmallest(final int[][] matrix, int k) {
int c = 0;
PriorityQueue<int[]> queue = new PriorityQueue<>(
k, (o1, o2) -> matrix[o1[0]][o1[1]] - matrix[o2[0]][o2[1]]);
queue.offer(new int[] {0, 0});
while (true) {
int[] pair = queue.poll();
if (++c == k) {
return matrix[pair[0]][pair[1]];
}
if (pair[0] == 0 && pair[1] + 1 < matrix[0].length) {
queue.offer(new int[] {0, pair[1] + 1});
}
if (pair[0] + 1 < matrix.length) {
queue.offer(new int[] {pair[0] + 1, pair[1]});
}
}
https://discuss.leetcode.com/topic/52871/java-priorityqueue-solution/5 private class Value implements Comparable<Value> {
int val;
int row;
int col;
public Value(int val, int row, int col) {
this.val = val;
this.row = row;
this.col = col;
}
public int compareTo(Value other) {
return this.val - other.val;
}
}
public int kthSmallest(int[][] matrix, int k) {
PriorityQueue<Value> minHeap = new PriorityQueue<Value>();
minHeap.add(new Value(matrix[0][0], 0, 0));
for(int x = 1; x < k; x++) {
Value val = minHeap.poll();
if(val.row + 1 < matrix.length) {
minHeap.add(new Value(matrix[val.row + 1][val.col], val.row + 1, val.col));
}
// avoid duplicates
if(val.row == 0 && val.col + 1 < matrix[0].length) {
minHeap.add(new Value(matrix[0][val.col + 1], 0, val.col + 1));
}
}
return minHeap.peek().val;
}
先按从上往下, 从左往右的顺序将k个元素放入堆中. 对于剩下的元素, 每一行从头开始与堆顶比较, 如果小于堆顶, 就把它放入堆中, 把原堆顶弹出. 该行中出现>=堆顶的元素时即可停止对这一行的处理. 运行时间112ms.
http://blog.csdn.net/yeqiuzs/article/details/52089480
int kthSmallest(vector<vector<int>>& matrix, int k) {
int n = matrix.size();
priority_queue<int> heap;
for(int i = 0; i < n; i++){
if(heap.size() < k){
int j;
for(j = 0; j < n && heap.size() < k; j++){
heap.push(matrix[i][j]);
}
for(; j < n && heap.top() > matrix[i][j]; j++){
heap.pop();
heap.push(matrix[i][j]);
}
}
else{
for(int j = 0; j < n && heap.top() > matrix[i][j]; j++){
heap.pop();
heap.push(matrix[i][j]);
}
}
}
return heap.top();
}
http://www.jiuzhang.com/solutions/kth-smallest-number-in-sorted-matrix/public class Point { public int x, y, val; public Point(int x, int y, int val) { this.x = x; this.y = y; this.val = val; } } Comparator<Point> comp = new Comparator<Point>() { public int compare(Point left, Point right) { return left.val - right.val; } }; public int kthSmallest(int[][] matrix, int k) { if (matrix == null || matrix.length == 0 || matrix[0].length == 0) { return 0; } if (k > matrix.length * matrix[0].length) { return 0; } return horizontal(matrix, k); } private int horizontal(int[][] matrix, int k) { Queue<Point> heap = new PriorityQueue<Point>(k, comp); for (int i = 0; i < Math.min(matrix.length, k); i++) { heap.offer(new Point(i, 0, matrix[i][0])); } for (int i = 0; i < k - 1; i++) { Point curr = heap.poll(); if (curr.y + 1 < matrix[0].length) { heap.offer(new Point(curr.x, curr.y + 1, matrix[curr.x][curr.y + 1])); } } return heap.peek().val; }https://all4win78.wordpress.com/2016/08/01/leetcode-378-kth-smallest-element-in-a-sorted-matrix/
http://blog.csdn.net/yeqiuzs/article/details/52089480
http://www.voidcn.com/blog/corpsepiges/article/p-6132483.html
https://discuss.leetcode.com/topic/52924/java-klog-k-37ms-solution-with-heap
-- not that efficient
http://xiadong.info/2016/08/leetcode-378-kth-smallest-element-in-a-sorted-matrix/
int kthSmallest(vector<vector<int>>& matrix, int k) {
int n = matrix.size();
vector<int> matrixPos(n, 0);
int ret;
for(int i = 0; i < k; i++){
int minNum = INT_MAX, minPos = 0;
for(int j = 0; j < n; j++){
if(matrixPos[j] == n) continue;
if(matrix[j][matrixPos[j]] < minNum){
minNum = matrix[j][matrixPos[j]];
minPos = j;
}
}
matrixPos[minPos]++;
ret = minNum;
}
return ret;
}
https://discuss.leetcode.com/topic/53161/hashmap-treeset-approach-java-o-n-2-logn-n-time-and-o-n-2-space-complexity
-- then why not use treemap
X. https://discuss.leetcode.com/topic/53126/o-n-from-paper-yes-o-rows
X.
http://www.cnblogs.com/grandyang/p/5727892.html
- public int kthSmallest(int[][] matrix, int k) {
- PriorityQueue<Integer> heap = new PriorityQueue<Integer>(new Comparator<Integer>() {
- public int compare(Integer a0, Integer a1) {
- if(a0>a1){
- return -1;
- }else if(a0<a1){
- return 1;
- }
- return 0;
- }
- });// 最大堆
- for (int i = 0; i < matrix.length; i++) {
- for (int j = 0; j < matrix.length; j++) {
- if (i * matrix.length + j + 1 > k) {
- if (matrix[i][j] < heap.peek()) {
- heap.poll();
- heap.offer(matrix[i][j]);
- }
- } else {
- heap.offer(matrix[i][j]);
- }
- }
- }
- return heap.peek();
- }
https://discuss.leetcode.com/topic/52924/java-klog-k-37ms-solution-with-heap
-- not that efficient
http://xiadong.info/2016/08/leetcode-378-kth-smallest-element-in-a-sorted-matrix/
首先的想法是每次从n行中取最前端的n个值中的最小值, 然后这个值从该行删除, 重复k次. 时间复杂度O(nk). 实际运行时间280ms.
int n = matrix.size();
vector<int> matrixPos(n, 0);
int ret;
for(int i = 0; i < k; i++){
int minNum = INT_MAX, minPos = 0;
for(int j = 0; j < n; j++){
if(matrixPos[j] == n) continue;
if(matrix[j][matrixPos[j]] < minNum){
minNum = matrix[j][matrixPos[j]];
minPos = j;
}
}
matrixPos[minPos]++;
ret = minNum;
}
return ret;
}
https://discuss.leetcode.com/topic/53161/hashmap-treeset-approach-java-o-n-2-logn-n-time-and-o-n-2-space-complexity
-- then why not use treemap
X. https://discuss.leetcode.com/topic/53126/o-n-from-paper-yes-o-rows
It's O(n) where n is the number of rows (and columns), not the number of elements. So it's very efficient. The algorithm is from the paper Selection in X + Y and matrices with sorted rows and columns, which I first saw mentioned by @elmirap (thanks).
The basic idea: Consider the submatrix you get by removing every second row and every second column. This has about a quarter of the elements of the original matrix. And the k-th element (k-th smallest I mean) of the original matrix is roughly the (k/4)-th element of the submatrix. So roughly get the (k/4)-th element of the submatrix and then use that to find the k-th element of the original matrix in O(n) time. It's recursive, going down to smaller and smaller submatrices until a trivial 2×2 matrix. For more details I suggest checking out the paper, the first half is easy to read and explains things well. Or @zhiqing_xiao's solution+explanation.
Cool: It uses variants of saddleback search that you might know for example from the Search a 2D Matrix II problem. And it uses the median of medians algorithm for linear-time selection.
Optimization: If k is less than n, we only need to consider the top-left k×k matrix. Similar if k is almost n2. So it's even O(min(n, k, n^2-k)), I just didn't mention that in the title because I wanted to keep it simple and because those few very small or very large k are unlikely, most of the time k will be "medium" (and average n2/2).
Implementation: I implemented the submatrix by using an index list through which the actual matrix data gets accessed. If [0, 1, 2, ..., n-1] is the index list of the original matrix, then [0, 2, 4, ...] is the index list of the submatrix and [0, 4, 8, ...] is the index list of the subsubmatrix and so on. This also covers the above optimization by starting with [0, 1, 2, ..., k-1] when applicable.
Application: I believe it can be used to easily solve the Find K Pairs with Smallest Sums problem in time O(k) instead of O(k log n), which I think is the best posted so far. I might try that later if nobody beats me to it (if you do, let me know :-). Update: I did that now.
def kthSmallest(self, matrix, k):
# The median-of-medians selection function.
def pick(a, k):
if k == 1:
return min(a)
groups = (a[i:i+5] for i in range(0, len(a), 5))
medians = [sorted(group)[len(group) / 2] for group in groups]
pivot = pick(medians, len(medians) / 2 + 1)
smaller = [x for x in a if x < pivot]
if k <= len(smaller):
return pick(smaller, k)
k -= len(smaller) + a.count(pivot)
return pivot if k < 1 else pick([x for x in a if x > pivot], k)
# Find the k1-th and k2th smallest entries in the submatrix.
def biselect(index, k1, k2):
# Provide the submatrix.
n = len(index)
def A(i, j):
return matrix[index[i]][index[j]]
# Base case.
if n <= 2:
nums = sorted(A(i, j) for i in range(n) for j in range(n))
return nums[k1-1], nums[k2-1]
# Solve the subproblem.
index_ = index[::2] + index[n-1+n%2:]
k1_ = (k1 + 2*n) / 4 + 1 if n % 2 else n + 1 + (k1 + 3) / 4
k2_ = (k2 + 3) / 4
a, b = biselect(index_, k1_, k2_)
# Prepare ra_less, rb_more and L with saddleback search variants.
ra_less = rb_more = 0
L = []
jb = n # jb is the first where A(i, jb) is larger than b.
ja = n # ja is the first where A(i, ja) is larger than or equal to a.
for i in range(n):
while jb and A(i, jb - 1) > b:
jb -= 1
while ja and A(i, ja - 1) >= a:
ja -= 1
ra_less += ja
rb_more += n - jb
L.extend(A(i, j) for j in range(jb, ja))
# Compute and return x and y.
x = a if ra_less <= k1 - 1 else \
b if k1 + rb_more - n*n <= 0 else \
pick(L, k1 + rb_more - n*n)
y = a if ra_less <= k2 - 1 else \
b if k2 + rb_more - n*n <= 0 else \
pick(L, k2 + rb_more - n*n)
return x, y
# Set up and run the search.
n = len(matrix)
start = max(k - n*n + n-1, 0)
k -= n*n - (n - start)**2
return biselect(range(start, min(n, start+k)), k, k)[0]
X.
http://www.cnblogs.com/grandyang/p/5727892.html
这题我们也可以用二分查找法来做,我们由于是有序矩阵,那么左上角的数字一定是最小的,而右下角的数字一定是最大的,所以这个是我们搜索的范围,然后我们算出中间数字mid,由于矩阵中不同行之间的元素并不是严格有序的,所以我们要在每一行都查找一下mid,我们使用upper_bound,这个函数是查找第一个大于目标数的元素,如果目标数在比该行的尾元素大,则upper_bound返回该行元素的个数,如果目标数比该行首元素小,则upper_bound返回0, 我们遍历完所有的行可以找出中间数是第几小的数,然后k比较,进行二分查找,left和right最终会相等,并且会变成数组中第k小的数字。举个例子来说吧,比如数组为:
[1 2
12 100]
k = 3
那么刚开始left = 1, right = 100, mid = 50, 遍历完 cnt = 3,此时right更新为50
此时left = 1, right = 50, mid = 25, 遍历完之后 cnt = 3, 此时right更新为25
此时left = 1, right = 25, mid = 13, 遍历完之后 cnt = 3, 此时right更新为13
此时left = 1, right = 13, mid = 7, 遍历完之后 cnt = 2, 此时left更新为8
此时left = 8, right = 13, mid = 10, 遍历完之后 cnt = 2, 此时left更新为11
此时left = 11, right = 12, mid = 11, 遍历完之后 cnt = 2, 此时left更新为12
循环结束,left和right均为12,任意返回一个即可。
12 100]
k = 3
那么刚开始left = 1, right = 100, mid = 50, 遍历完 cnt = 3,此时right更新为50
此时left = 1, right = 50, mid = 25, 遍历完之后 cnt = 3, 此时right更新为25
此时left = 1, right = 25, mid = 13, 遍历完之后 cnt = 3, 此时right更新为13
此时left = 1, right = 13, mid = 7, 遍历完之后 cnt = 2, 此时left更新为8
此时left = 8, right = 13, mid = 10, 遍历完之后 cnt = 2, 此时left更新为11
此时left = 11, right = 12, mid = 11, 遍历完之后 cnt = 2, 此时left更新为12
循环结束,left和right均为12,任意返回一个即可。
这个方法只要求行有序,和列有木有序并没有关系。 (或者列有序,行有序无序都没关系)
设L = min(matrix) R= max(matrix) , mid =( L + R ) / 2 ,mid为我们猜测的答案。
然后对于每一行,找它在该行中第几大(也是二分,找上界),累加和K比较。
值得注意的是枚举 答案应该用下界, 因为猜想的解不一定在数组中,不断的收缩直到找到在数组中的元素为止。
查找一行需要log(n) ,有n行所以nlog(n),最坏下需要查找log(X)次(X= int最大值的时候logX仅仅才为32),X为最大最小数差值。 所以总复杂度为O(nlogn * logX)
本解法的整体时间复杂度为O(nlgn*lgX),其中X为最大值和最小值的差值,参见代码如下:
int kthSmallest(vector<vector<int>>& matrix, int k) { int left = matrix[0][0], right = matrix.back().back(); while (left < right) { int mid = left + (right - left) / 2, cnt = 0; for (int i = 0; i < matrix.size(); ++i) { cnt += upper_bound(matrix[i].begin(), matrix[i].end(), mid) - matrix[i].begin(); } if (cnt < k) left = mid + 1; else right = mid; } return left; }