LeetCode 1008 - Construct Binary Search Tree from Preorder Traversal


Related: 
Construct a Binary Search Tree from given postorder

https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/discuss/252232/JavaC%2B%2BPython-O(N)-Solution
Find the left part and right part,
then recursively construct the tree.

Solution 1:

Time: O(HlogN)
    def bstFromPreorder(self, A):
        if not A: return None
        root = TreeNode(A[0])
        i = bisect.bisect(A, A[0])
        root.left = self.bstFromPreorder(A[1:i])
        root.right = self.bstFromPreorder(A[i:])
        return root

Solution 2

Give the function a bound the maximum number it will handle.
The left recursion will take the elements smaller than node.val
The right recursion will take the remaining elements smaller than bound
Time: O(N)
    int i = 0;
    public TreeNode bstFromPreorder(int[] A) {
        return bstFromPreorder(A, Integer.MAX_VALUE);
    }

    public TreeNode bstFromPreorder(int[] A, int bound) {
        if (i == A.length || A[i] > bound) return null;
        TreeNode root = new TreeNode(A[i++]);
        root.left = bstFromPreorder(A, root.val);
        root.right = bstFromPreorder(A, bound);
        return root;
    }
X. https://leetcode.com/problems/construct-binary-search-tree-from-preorder-traversal/discuss/252754/Java-Stack-Iterative-Solution
    public TreeNode bstFromPreorder(int[] preorder) {
        if (preorder == null || preorder.length == 0) {
            return null;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode root = new TreeNode(preorder[0]);
        stack.push(root);
        for (int i = 1; i < preorder.length; i++) {
            TreeNode node = new TreeNode(preorder[i]);
            if (preorder[i] < stack.peek().val) {                
                stack.peek().left = node;                
            } else {
                TreeNode parent = stack.peek();
                while (!stack.isEmpty() && preorder[i] > stack.peek().val) {
                    parent = stack.pop();
                }
                parent.right = node;
            }
            stack.push(node);            
        }
        return root;
    }
http://www.noteanddata.com/leetcode-1008-Construct-Binary-Search-Tree-from-Preorder-Traversal-java-solution-note.html
平均O(N*lgN), 最差O(N^2), 相当于对于树的每一层,都对N个元素做了一次访问, 树高平均是lgN, 最差是N
public TreeNode bstFromPreorder(int[] preorder) {
    return tree(preorder, 0, preorder.length-1);
}

public TreeNode tree(int[] preorder, int from, int to) {
    if(from > to) return null;
    TreeNode root = new TreeNode(preorder[from]);
    boolean found = false;
    for(int i = from+1; i <= to; ++i) {
        if(preorder[i] > preorder[from]) {
            root.left = tree(preorder, from+1, i-1);
            root.right = tree(preorder, i, to);
            found = true;
            break;
        }
    }
    if(!found) {
        root.left = tree(preorder, from+1, to);
    }
    
    return root;
}
https://www.ideserve.co.in/learn/serialize-deserialize-binary-search-tree-using-post-order-traversal
    public TreeNode deserializeArrayOptimized(int[] postorder, int[] currIndex, int min, int max)
    {
        if (currIndex[0] < 0) return null;
         
        TreeNode root = null;
         
        if ((postorder[currIndex[0]] > min) && (postorder[currIndex[0]] < max))
        {
            root = new TreeNode(postorder[currIndex[0]]);
            currIndex[0] -= 1;
            root.right = deserializeArrayOptimized(postorder, currIndex, root.val, max);
            root.left = deserializeArrayOptimized(postorder, currIndex, min, root.val);
        }
         
        return root;
    }
     
    private int findDivision(int[] postorder, int value, int low, int high)
    {
        int i = high;
        for (; i >= low; i--)
        {
            if (value > postorder[i])
                break;
        }
        return i;
    }
    public TreeNode deserializeArray(int[] postorder, int low, int high)
    {
        if (low > high) return null;
         
        TreeNode root = new TreeNode(postorder[high]);
         
        int divIndex = findDivision(postorder, root.val, low, high - 1);
         
        root.left = deserializeArray(postorder, low, divIndex);
        root.right = deserializeArray(postorder, divIndex + 1, high - 1);
        return root;
    }

Construct a Binary Search Tree from given postorder - GeeksforGeeks
Related: Construct BST from given preorder traversal
Given postorder traversal of a binary search tree, construct the BST.
For example, if the given traversal is {1, 7, 5, 50, 40, 10}, then following tree should be constructed and root of the tree should be returned.

     10
   /   \
  5     40
 /  \      \
1    7      50
Method 2 ( O(n) time complexity )
The trick is to set a range {min .. max} for every node. Initialize the range as {INT_MIN .. INT_MAX}. The last node will definitely be in range, so create root node. To construct the left subtree, set the range as {INT_MIN …root->data}. If a values is in the range {INT_MIN .. root->data}, the values is part part of left subtree. To construct the right subtree, set the range as {root->data .. INT_MAX}.
class Node 
{
    int data;
    Node left, right;
  
    Node(int data) 
    {
        this.data = data;
        left = right = null;
    }
}
  
// Class containing variable that keeps a track of overall
// calculated postindex
class Index 
{
    int postindex = 0;
}
  
class BinaryTree 
{
    // A recursive function to construct BST from post[]. 
    // postIndex is used to keep track of index in post[].
    Node constructTreeUtil(int post[], Index postIndex,
            int key, int min, int max, int size) 
    {
        // Base case
        if (postIndex.postindex < 0)
            return null;
  
        Node root = null;
  
        // If current element of post[] is in range, then
        // only it is part of current subtree
        if (key > min && key < max) 
        {
            // Allocate memory for root of this subtree and decrement
            // *postIndex
            root = new Node(key);
            postIndex.postindex = postIndex.postindex - 1;
  
            if (postIndex.postindex > 0
            {
                // All nodes which are in range {key..max} will go in 
                // right subtree, and first such node will be root of right
                // subtree
                root.right = constructTreeUtil(post, postIndex, 
                        post[postIndex.postindex],key, max, size);
  
                // Contruct the subtree under root
                // All nodes which are in range {min .. key} will go in left
                // subtree, and first such node will be root of left subtree.
                root.left = constructTreeUtil(post, postIndex, 
                        post[postIndex.postindex],min, key, size);
            }
        }
        return root;
    }
  
    // The main function to construct BST from given postorder
    // traversal. This function mainly uses constructTreeUtil()
    Node constructTree(int post[], int size) 
    {
        Index index = new Index();
        index.postindex = size - 1;
        return constructTreeUtil(post, index, post[index.postindex],
                Integer.MIN_VALUE, Integer.MAX_VALUE, size);
    }
https://www.techiedelight.com/build-binary-search-tree-from-postorder-sequence/
Node* buildTree(vector<int> const &postorder, int& pIndex,
                int min, int max)
{
    // Base case
    if (pIndex < 0)
        return nullptr;
    // Return if next element of postorder traversal from the end
    // is not in valid range
    int curr = postorder[pIndex];
    if (curr < min || curr > max)
        return nullptr;
    // Construct the root node and decrement pIndex
    Node* root = newNode(curr);
    pIndex--;
    // Construct left and right subtree of the root node.
    // Build right subtree before left subtree since the values are
    // being read from the end of the postorder sequence
    // Since all elements in the right subtree of a BST must be greater
    // than the value of root node, set range as [curr+1..max] and recur
    root->right = buildTree(postorder, pIndex, curr+1, max);
    // Since all elements in the left subtree of a BST must be less
    // than the value of root node, set range as [min, curr-1] and recur
    root->left = buildTree(postorder, pIndex, min, curr-1);
    return root;
}
// Build a binary search tree from its postorder sequence
Node* buildTree(vector<int> const &postorder)
{
    // start from the root node (last element in postorder sequence)
    int postIndex = postorder.size() - 1;
    // set range of the root node as [INT_MIN, INT_MAX] and recur
    return buildTree(postorder, postIndex, INT_MIN, INT_MAX);
}
X. https://www.geeksforgeeks.org/construct-a-bst-from-given-postorder-traversal-using-stack/
  • Push root of the BST to the stack i.e, last element of the array.
  • Start traversing the array in reverse, if next element is > the element at the top of the stack then,
    set this element as the right child of the element at the top of the stack and also push it to the stack.
  • Else if, next element is < the element at the top of the stack then,
    start popping all the elements from the stack until either the stack is empty or the current element becomes > the element at the top of the stack.
  • Make this element left child of the last popped node and repeat the above steps until the array is traversed completely.
    Node constructTreeUtil(int post[], int n)
    {
        // Last node is root
        Node root = new Node(post[n - 1]);
        Stack<Node> s = new Stack<>();
        s.push(root);
  
        // Traverse from second last node
        for (int i = n - 2; i >= 0; --i) {
              
            Node x = new Node(post[i]);
  
            // Keep popping nodes while top() of stack
            // is greater.
            Node temp = null;
            while (!s.isEmpty() && post[i] < s.peek().data) 
                temp = s.pop();      
  
            // Make x as left child of temp   
            if (temp != null
                temp.left = x;      
  
            // Else make x as right of top      
            else
                s.peek().right = x;
            s.push(x);
        }
        return root;
    }
  
    // Function that calls the method which contructs the tree
    Node constructTree(int post[], int size)
    {
        return constructTreeUtil(post, size);
    }
Method 1 ( O(n^2) time complexity )
The last element of postorder traversal is always root. We first construct the root. Then we find the index of last element which is smaller than root. Let the index be ‘i’. The values between 0 and ‘i’ are part of left subtree, and the values between ‘i+1′ and ‘n-2′ are part of right subtree. Divide given post[] at index “i” and recur for left and right sub-trees.
For example in {1, 7, 5, 40, 50, 10}, 10 is the last element, so we make it root. Now we look for the last element smaller than 10, we find 5. So we know the structure of BST is as following.
             10
           /    \
          /      \
  {1, 7, 5}       {50, 40}
We recursively follow above steps for subarrays {1, 7, 5} and {40, 50}, and get the complete tree.
https://www.techiedelight.com/build-binary-search-tree-from-postorder-sequence/
struct Node* constructBST(int postorder[], int start, int end)
{
    // base case
    if (start > end)
        return NULL;
    // Construct the root node of the subtree formed by keys of the
    // postorder sequence in range [start, end]
    struct Node *node = newNode(postorder[end]);
    // search the index of last element in current range of postorder
    // sequence which is smaller than the value of root node
    int i;
    for (i = end; i >=start; i--) {
        if (postorder[i] < node->key)
            break;
    }
    // Build right subtree before left subtree since the values are
    // being read from the end of the postorder sequence
    // recursively construct the right subtree
    node->right = constructBST(postorder, i + 1, end - 1);
    // recursively construct the left subtree
    node->left = constructBST(postorder, start, i);
    // return current node
    return node;
}
http://stackoverflow.com/questions/21173541/construct-binary-search-tree-from-post-order-traversal-in-java
public static Node buildBinarytreefromPostOrder(int[] post, int start, int end)
{
    if (end < start)
        return null;

    Node root = new Node(post[end]);

    if (end == start)
        return root;

    int i;
    for (i = end; i >= start; i--)
        if (post[i] < root.data)
            break;

    root.left = buildBinarytreefromPostOrder(post, start, i);
    root.right = buildBinarytreefromPostOrder(post, i + 1, end - 1);

    return root;
}
Read full article from Construct a Binary Search Tree from given postorder - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts