Bin Packing Problem (Minimize number of used Bins) - GeeksforGeeks


Bin Packing Problem (Minimize number of used Bins) - GeeksforGeeks
Given n items of different weights and bins each of capacity c, assign each item to a bin such that number of total used bins is minimized. It may be assumed that all items have weights smaller than bin capacity.
Input:  wieght[]       = {4, 8, 1, 4, 2, 1}
        Bin Capacity c = 10
Output: 2
We need minimum 2 bins to accommodate all items
First bit contains {4, 4, 2} and second bin {8, 2}
We can always find a lower bound on minimum number of bins required. The lower bound can be given as :
   Min no. of bins  >=  Ceil ((Total Weight) / (Bin Capacity))
  
In the above examples, lower bound for first example is “ceil(4 + 8 + 1 + 4 + 2 + 1)/10″ = 2 and lower bound in second example is “ceil(9 + 8 + 2 + 2 + 5 + 4)/10″ = 3.
This problem is a NP Hard problem and finding an exact minimum number of bins takes exponential time. 
Online Algorithms

These algorithms are for Bin Packing problems where items arrive one at a time (in unknown order), each must be put in a bin, before considering the next item.
1. Next Fit:
When processing next item, check if it fits in the same bin as the last item. Use a new bin only if it does not.
nt nextFit(int weight[], int n, int c)
{
   // Initialize result (Count of bins) and remaining
   // capacity in current bin.
   int res = 0, bin_rem = c;
 
   // Place items one by one
   for (int i=0; i<n; i++)
   {
       // If this item can't fit in current bin
       if (weight[i] > bin_rem)
       {
          res++;  // Use a new bin
          bin_rem = c - weight[i];
       }
       else
         bin_rem -= weight[i];
   }
   return res;
}
Next Fit is a simple algorithm. It requires only O(n) time and O(1) extra space to process n items.
Next Fit is 2 approximate, i.e., the number of bins used by this algorithm is bounded by twice of optimal. Consider any two adjacent bins. The sum of items in these two bins must be > c; otherwise, NextFit would have put all the items of second bin into the first. The same holds for all other bins. Thus, at most half the space is wasted, and so Next Fit uses at most 2M bins if M is optimal.


2. First Fit:
When processing the next item, see if it fits in the same bin as the last item. Start a new bin only if it does not.
int firstFit(int weight[], int n, int c)
{
    // Initialize result (Count of bins)
    int res = 0;
 
    // Create an array to store remaining space in bins
    // there can be at most n bins
    int bin_rem[n];
 
    // Place items one by one
    for (int i=0; i<n; i++)
    {
        // Find the first bin that can accommodate
        // weight[i]
        int j;
        for (j=0; j<res; j++)
        {
            if (bin_rem[j] >= weight[i])
            {
                bin_rem[j] = bin_rem[j] - weight[i];
                break;
            }
        }
 
        // If no bin could accommodate weight[i]
        if (j==res)
        {
            bin_rem[res] = c - weight[i];
            res++;
        }
    }
    return res;
}
The above implementation of First Fit requires O(n2) time, but First Fit can be implemented in O(n Log n) time using Self-Balancing Binary Search Trees.
If M is the optimal number of bins, then First Fit never uses more than 1.7M bins. So First Fit is better than Next Fit in terms of upper bound on number of bins.


3. Best Fit:
The idea is to places the next item in the *tightest* spot. That is, put it in the bin so that smallest empty space is left.
int bestFit(int weight[], int n, int c)
{
    // Initialize result (Count of bins)
    int res = 0;
 
    // Create an array to store remaining space in bins
    // there can be at most n bins
    int bin_rem[n];
 
    // Place items one by one
    for (int i=0; i<n; i++)
    {
        // Find the best bin that ca\n accomodate
        // weight[i]
        int j;
 
        // Initialize minimum space left and index
        // of best bin
        int min = c+1, bi = 0;
 
        for (j=0; j<res; j++)
        {
            if (bin_rem[j] >= weight[i] &&
                    bin_rem[j] - weight[i] < min)
            {
                bi = j;
                min = bin_rem[j] - weight[i];
            }
        }
 
        // If no bin could accommodate weight[i],
        // create a new bin
        if (min==c+1)
        {
            bin_rem[res] = c - weight[i];
            res++;
        }
        else // Assign the item to best bin
            bin_rem[bi] -= weight[i];
    }
    return res;
}
Offline Algorithms

In the offline version, we have all items upfront. Unfortunately offline version is also NP Complete, but we have a better approximate algorithm for it. First Fit Decreasing uses at most (4M + 1)/3 bins if the optimal is M.


4. First Fit Decreasing:
A trouble with online algorithms is that packing large items is difficult, especially if they occur late in the sequence. We can circumvent this by *sorting* the input sequence, and placing the large items first. With sorting, we get First Fit Decreasing and Best Fit Decreasing, as offline analogs of online First Fit and Best Fit.
int firstFitDec(int weight[], int n, int c)
{
    // First sort all weights in decreasing order
    sort(weight, weight+n, std::greater<int>());
 
    // Now call first fit for sorted items
    return firstFit(weight, n, c);
}
Read full article from Bin Packing Problem (Minimize number of used Bins) - GeeksforGeeks

Labels

LeetCode (1432) GeeksforGeeks (1122) LeetCode - Review (1067) Review (882) Algorithm (668) to-do (609) Classic Algorithm (270) Google Interview (237) Classic Interview (222) Dynamic Programming (220) DP (186) Bit Algorithms (145) POJ (141) Math (137) Tree (132) LeetCode - Phone (129) EPI (122) Cracking Coding Interview (119) DFS (115) Difficult Algorithm (115) Lintcode (115) Different Solutions (110) Smart Algorithm (104) Binary Search (96) BFS (91) HackerRank (90) Binary Tree (86) Hard (79) Two Pointers (78) Stack (76) Company-Facebook (75) BST (72) Graph Algorithm (72) Time Complexity (69) Greedy Algorithm (68) Interval (63) Company - Google (62) Geometry Algorithm (61) Interview Corner (61) LeetCode - Extended (61) Union-Find (60) Trie (58) Advanced Data Structure (56) List (56) Priority Queue (53) Codility (52) ComProGuide (50) LeetCode Hard (50) Matrix (50) Bisection (48) Segment Tree (48) Sliding Window (48) USACO (46) Space Optimization (45) Company-Airbnb (41) Greedy (41) Mathematical Algorithm (41) Tree - Post-Order (41) ACM-ICPC (40) Algorithm Interview (40) Data Structure Design (40) Graph (40) Backtracking (39) Data Structure (39) Jobdu (39) Random (39) Codeforces (38) Knapsack (38) LeetCode - DP (38) Recursive Algorithm (38) String Algorithm (38) TopCoder (38) Sort (37) Introduction to Algorithms (36) Pre-Sort (36) Beauty of Programming (35) Must Known (34) Binary Search Tree (33) Follow Up (33) prismoskills (33) Palindrome (32) Permutation (31) Array (30) Google Code Jam (30) HDU (30) Array O(N) (29) Logic Thinking (29) Monotonic Stack (29) Puzzles (29) Code - Detail (27) Company-Zenefits (27) Microsoft 100 - July (27) Queue (27) Binary Indexed Trees (26) TreeMap (26) to-do-must (26) 1point3acres (25) GeeksQuiz (25) Merge Sort (25) Reverse Thinking (25) hihocoder (25) Company - LinkedIn (24) Hash (24) High Frequency (24) Summary (24) Divide and Conquer (23) Proof (23) Game Theory (22) Topological Sort (22) Lintcode - Review (21) Tree - Modification (21) Algorithm Game (20) CareerCup (20) Company - Twitter (20) DFS + Review (20) DP - Relation (20) Brain Teaser (19) DP - Tree (19) Left and Right Array (19) O(N) (19) Sweep Line (19) UVA (19) DP - Bit Masking (18) LeetCode - Thinking (18) KMP (17) LeetCode - TODO (17) Probabilities (17) Simulation (17) String Search (17) Codercareer (16) Company-Uber (16) Iterator (16) Number (16) O(1) Space (16) Shortest Path (16) itint5 (16) DFS+Cache (15) Dijkstra (15) Euclidean GCD (15) Heap (15) LeetCode - Hard (15) Majority (15) Number Theory (15) Rolling Hash (15) Tree Traversal (15) Brute Force (14) Bucket Sort (14) DP - Knapsack (14) DP - Probability (14) Difficult (14) Fast Power Algorithm (14) Pattern (14) Prefix Sum (14) TreeSet (14) Algorithm Videos (13) Amazon Interview (13) Basic Algorithm (13) Codechef (13) Combination (13) Computational Geometry (13) DP - Digit (13) LCA (13) LeetCode - DFS (13) Linked List (13) Long Increasing Sequence(LIS) (13) Math-Divisible (13) Reservoir Sampling (13) mitbbs (13) Algorithm - How To (12) Company - Microsoft (12) DP - Interval (12) DP - Multiple Relation (12) DP - Relation Optimization (12) LeetCode - Classic (12) Level Order Traversal (12) Prime (12) Pruning (12) Reconstruct Tree (12) Thinking (12) X Sum (12) AOJ (11) Bit Mask (11) Company-Snapchat (11) DP - Space Optimization (11) Dequeue (11) Graph DFS (11) MinMax (11) Miscs (11) Princeton (11) Quick Sort (11) Stack - Tree (11) 尺取法 (11) 挑战程序设计竞赛 (11) Coin Change (10) DFS+Backtracking (10) Facebook Hacker Cup (10) Fast Slow Pointers (10) HackerRank Easy (10) Interval Tree (10) Limited Range (10) Matrix - Traverse (10) Monotone Queue (10) SPOJ (10) Starting Point (10) States (10) Stock (10) Theory (10) Tutorialhorizon (10) Kadane - Extended (9) Mathblog (9) Max-Min Flow (9) Maze (9) Median (9) O(32N) (9) Quick Select (9) Stack Overflow (9) System Design (9) Tree - Conversion (9) Use XOR (9) Book Notes (8) Company-Amazon (8) DFS+BFS (8) DP - States (8) Expression (8) Longest Common Subsequence(LCS) (8) One Pass (8) Quadtrees (8) Traversal Once (8) Trie - Suffix (8) 穷竭搜索 (8) Algorithm Problem List (7) All Sub (7) Catalan Number (7) Cycle (7) DP - Cases (7) Facebook Interview (7) Fibonacci Numbers (7) Flood fill (7) Game Nim (7) Graph BFS (7) HackerRank Difficult (7) Hackerearth (7) Inversion (7) Kadane’s Algorithm (7) Manacher (7) Morris Traversal (7) Multiple Data Structures (7) Normalized Key (7) O(XN) (7) Radix Sort (7) Recursion (7) Sampling (7) Suffix Array (7) Tech-Queries (7) Tree - Serialization (7) Tree DP (7) Trie - Bit (7) 蓝桥杯 (7) Algorithm - Brain Teaser (6) BFS - Priority Queue (6) BFS - Unusual (6) Classic Data Structure Impl (6) DP - 2D (6) DP - Monotone Queue (6) DP - Unusual (6) DP-Space Optimization (6) Dutch Flag (6) How To (6) Interviewstreet (6) Knapsack - MultiplePack (6) Local MinMax (6) MST (6) Minimum Spanning Tree (6) Number - Reach (6) Parentheses (6) Pre-Sum (6) Probability (6) Programming Pearls (6) Rabin-Karp (6) Reverse (6) Scan from right (6) Schedule (6) Stream (6) Subset Sum (6) TSP (6) Xpost (6) n00tc0d3r (6) reddit (6) AI (5) Abbreviation (5) Anagram (5) Art Of Programming-July (5) Assumption (5) Bellman Ford (5) Big Data (5) Code - Solid (5) Code Kata (5) Codility-lessons (5) Coding (5) Company - WMware (5) Convex Hull (5) Crazyforcode (5) DFS - Multiple (5) DFS+DP (5) DP - Multi-Dimension (5) DP-Multiple Relation (5) Eulerian Cycle (5) Graph - Unusual (5) Graph Cycle (5) Hash Strategy (5) Immutability (5) Java (5) LogN (5) Manhattan Distance (5) Matrix Chain Multiplication (5) N Queens (5) Pre-Sort: Index (5) Quick Partition (5) Quora (5) Randomized Algorithms (5) Resources (5) Robot (5) SPFA(Shortest Path Faster Algorithm) (5) Shuffle (5) Sieve of Eratosthenes (5) Strongly Connected Components (5) Subarray Sum (5) Sudoku (5) Suffix Tree (5) Swap (5) Threaded (5) Tree - Creation (5) Warshall Floyd (5) Word Search (5) jiuzhang (5)

Popular Posts